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NOTICES i

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.
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INTRODUCTION

This Appendix contains the reprints published under JSEP in the time

October 1987 to September 1988.

In addition to the reprints contained herein, there are 19 papers al-

ready accepted for publication during the next contract period, 12 papers

submitted and 9 papers in preparation.
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and Electronic Systems, Vol. AES-23, No. 5, pp. 602-611, September
1987.

3. M.W. Ganz, R.T. Compton, "Protection of a Narrow-Band BPSK
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on Communications, Vol., COM-35, No. 10, pp. 1005-1011, October
1987.

4. R.G. Rojas, "Comparison Between Two Asymptotic Methods," IEEE
Transactions onz Antennas and Propagation, Vol. AP-35, No. 12,
December 1987.

5. R. Paknys and N. Wang, "Excitation of Creeping Waves on a Circular
Cylinder with a Thick Dielectric Coating," IEEE Transactions on
Antennas and Propagation, Vol. AP-35, No. 12, pp. 1487-1489,
December 1987.

6. R.G. Rojas, "Weiner-Hopf Analysis of the EM Diffraction by an
Impedance Discontinuity in a Planar Surface and by an Impedance
Half-Plane," IEEE Transactions on Antennas and Propagation, Vol.
AP-36, No. 1, pp. 71-83, January 1988.

7. A. Altintas, P.H. Pathak, M.C. Liang, "A Selective Modal Scheme
for the Analysis of EM Coupling Into or Radiation from Large Open-
Ended Waveguides," IEEE Transactions on Antennas and Propaga-
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8. R.T. Compton, Jr., "The Bandwidth Performance of a Two-element
Adaptive Array with Tapped Delay-Line Processing," IEEE Trans-
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11. E.H. Newman, "An Overview of the Hybrid MM/Green's Function
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I 14. R.G. Rojas, "Generalized Impedance Boundary Conditions for EM
Scattering Problems," Electronics Letters, Vol. 24, No. 17, pp. 1093-3 1094, August 18, 1988.

15. E.H. Newman, "Simple Examples of the Method of Moments in Elec-
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I I. INTRODUCTION

1 The Effects of Gaussian Adaptive arrays can be used to protect communication
systems from interference. This protection is achievedInterference on when the array steers pattern nulls on the interfering

I Csignals and pattern beams on desired signals.
Comm unication Systems Methods for employing the LMS adaptive array [I in

several types of digital communication systems have beenwith Adaptive Arrays developed. Th, ---. ., -s include conventional binary
phase-shift-keyng (BPSK) 12], quadrature phase-shift-
keying (QPSK) [3], and binary frequency-shift-keying
(FSK) 14, 5]. Recently the authors have examined the
performance of each of these communication systems

M.W. GANZ with adaptive arrays when the desired signal is corrupted
M.I.T Lincoln Laboratory by CW interference. In 161 the performance of the LMS
R.T. COMPTON, JR. array with BPSK signaling and CW interference has been
The Ohio State University examined using the bit error probability at the receiver

output as the performance measure. The results presented
in 17] show that the performance of BPSK, QPSK, FSK,
and binary differential PSK systems with CW interference

The performance ofa bandlimited binary phase-shift-keyed are similar. These systems generally perform best when

Thercommniatonyste m s exa mined inareph eiv-keyed the array input bandwidth is as small as possible and
Sa comuntio ystem is mid h trecived Gas when the interference arrives from an angle outside the

signal is corrupted by both termaJ noise and a dirctiona Gauan main beam of the quiescent array pattern. In (71 and (8]
noise interfering signal. The system uses an LMS adaptive arry to the effects of the array bandwidth on system performance
suppress this interference. The effects of signa power levels, arrival are more closely examined.
angles, bandwidths, and the array bandwidth are examined. The In this paper we calculate the performance of a BPSK
performance of a system that uses tapped delay lines for the array communication system with an LMS adaptive array whenE weights is also examined. It is shown that the performance of a the desired signal is corrupted by both thermal noise and
system with tapped delay lines is not affected by the interference a directional Gaussian interference signal. In general, the
bandwidth for a single interferer, performance of an adaptive array is poorer with

broadband interference than with CW interference [9].
Also, the degradation with broadband interference is
largest when the interference power is large and when the
interference arrives near endfire. Here, we examine the
effects of the interference bandwidth, the array
bandwidth, the signal power levels, and the signal arrival
angles. We show that, for a fixed input interference
power, the system performance becomes worse as the
interference bandwidth increases, up to the point where
the interference bandwidth exceeds the desired signal

bandwidth.
In I i and 19-I] the use of tapped delay lines

(TDLs) behind the elements in an LMS array was

suggested. The TDL LMS array can reject broadband
interference since the weights can be set to optimize

Manuscript received November 12, 1986; revised April 21. 1987. performance over a band of frequencies. In this paper, we

This work supported in pan by Naval Air Systems Command under also examine the performance of the communication

Contract N00019-85-C-01 19 and in part by the Joint Services system with a TDL LMS array. We show that, with a
Electronics Program under Contract N00014-78-C-0049 with The Ohio single broadband interference source, this array achieves
State University Research Foundation. the same performance as the standard LMS array with a

Authors' addresses: M.W. Ganz. M.I.T. Lincoln Laboratory. zero-bandwidth interferer.
Lexington. MA 02173; R.T. Compton. Jr., ElectroScince Laboratory, In Section I1 we describe the BPSK communication
Department of Electrical Engineering. The Ohio State Univemty, system, the LMS array, and the TDL LMS array. In
Columbus, OH 43210. Section III we present the results from the performance
_calculations. Finally, in Section IV we present the

0018-0251/g7t0900-0654 S .00 0 1917 IEEE conclusions.
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11. PROBLEM FORMULATION 1 2 d
P(e) = rc dp

Consider the BPSK communication system shown in e+ef(11
Fig. 1. In this system the baseband NRZ-L [121 signal is w
filtered so that the signal at the filter output satisfies the where Pd, P,, and p, u are the desired, interfcring, andnoise powers at the output of the detector LPF and

erfc(x) is the complementary error function defined by

f01HT(W) y Wt? TO I.=fx(.22d
I O CHANNEL erfc(x) exp(-x/2)dz. (2)

rCos We now determine the performance of the

IC communication system described above when we add anSIGNAL LMS adaptive anay to the system at the detector input. A

three-element LMS adaptive array is shown in Fig. 2.

SYMBOL d (I) (DESIRED SIGNAL)
FROM THRESHOLD DECISIONS (II RFERENC)

CHANNEL ' H11() 8DETECTOR / ) (

Cos (A~d t

Fig I BI'SK o nuI1 l(catoii \stcin a)'Transniiner (b) Recciser. PF S PF

Nyquist pulse shaping criterion 1131. h, order to achieve X X X 4- C WEIGHT I
-3 W 1  CONTROL

the same bit error probability as unfiltered BPSK in white CIRCUIT

Gaussian noise with no intersymbol interference (iSl( the "1 (t)

baseband bandwidth of the system must be at least I2T ERROR SIGNAL)1-1 ithe Nyquist bandwidth), \,\here T is the bit duration(RORSGA

1141. For simplicity, we assume here that the transmitted
signal occupies the Nyquist equivalent channel with this
minimum bandwkidth. Therefore. the (double sideband) II)
radio frequency signal that is transmitted across the (ARRAY OUTPUT) iI

(REFERENCE
channel has a rectangular spectrum of width i/T Hz. SIGNAL)

The baseband transmit and detector filters required to Fig. 2. LMS adaptive array.
produce a rectangular signal spectrum are not physically
realizable, However, good approxinations to many of the The signals that arrive at the element inputs are filtered
members of the raised cosine family of filters are by ideal bandpass filters (BPFs) which limit the thermal I
realizable and can be used to obtain signals that satisfy noise at the array input and reject out-of-band
the Nyquist pulse shaping criterion. Some of the practical interference. We denote by X the vector composed of the
aspects of the design of narrowband BPSK system,,s are analytic signals at the BPF outputs; that is, X = Ji(t)
discussed by Bayless et al. 1151 and Feher 1161. i,W(i () 1'. where superscript T denotes the transpose.

At the receiving end. the detector filter output is We similarly define the weight for the array by W, where
sampled at the end of each bit interval and a bit decision W = IiI It it ,j'. The array output signal .(() is the
is made based upon the sign of the sample. Since we weighted sun of the array input signals,
have assumed that the baseband signal occupies the
rectangular Nyquist equivalent channel, the detector filter st) W X. (3)
is an ideal low-pass filter (LPF) with a cutoff frequency We assume that the desired, interfering, and thermal
of Il2T H/. The baseband signal at this filter output noise signals at the array input are uncorrelated zero-
consists of a series of sine (i.e., sin(A)/x) pulses centered mean signals. We divide the input signal vector into its
about the sampling instants. The sine pulse corresponding desired signal, interference, and noise components,
to the kth bit has zero crossings at the sampling instants
for every other bit. Therefore there is no ISI for this X = X, + + X,, (4)
signaling method. w

When the desired signal is corrupted by zero-mean where X, dd(t' l(t - F d(t - 2T, U, X,
Gaussian noise and zero-mean Gaussian interference, the I't - T, I(t- 2Tfl, and X,, = I(t) 6,(t) nfi(Jl. In
bit error probability P(e) at the detector output is given these expressions d(t) and i(t) are the analytic desired and
by interfering signals at the output of the BPF at the first

GANZ & COMPTON. COMMUNICATIJON SYSTEM GAUSSIAN INTERFERENCE 655 I



element and fil(t), fZ2 (t), and Fi3(t) are the noise signals at sa(Aw)

the BPF outputs. T1 and T, are the interelement time (W / NZ)  21rT

delays for the desired and interfering signals,Eb
respectively. E-

We assume that the thermal noise signals at the input
to each BPF is white with a two-sided PSD of ri12
everywhere. The noise signals at the filter outputs are
mutually uncorrelated Gaussian random processes each

with power r2 . We define the autocorrelation function for _-
the thermal noise process at the output of the jth BPF as Wd WO/61

Rh(,r) = EIl*(t)h(t +T)J Fig. 3. PSD of transmitted signal.

= U2 sinc(-rrB'r) exp(jWd-r) (5) the relative bandwidth Bd of the desired signal as the ratio

where E[. denotes the expected value, the asterisk of the signal bandwidth to the center frequency, that is,

denotes the complex conjugate, B is the BPF bandwidth (27r/T)
in Hz. and Bd = (14)

2 = -iB. (6) The autocorrelation function for the desired signal is

The output of the LMS array is subtracted from a the inverse Fourier transform of the PSD shown in Fig.

locally generated reference signal, i(t), to produce an 3. This autocorrelation function is given by

error signal, i(t). The steady-state LMS weights R(T) = E[d*(t)d(t + T)]

minimize the mean-square value of this error signal. The
steady state LMS weight vector is given by [1], Eb sincr) exp(iWd. (15)
W = 0-'S (7) T -  ( sic epjTa.(5

where (D is the covariance matrix, The interference is assumed to be a zero-mean
Gaussian random process with a PSD that is constant in a

(b = E[X* XT]. (8) bandwidth Awi centered about the desired signal center

S, the reference correlation vector, is given by frequency. ' We define Ei to be the interference energy
received by each element during each bit interval. We

S = EIX*r'(t)I. (9) define the relative bandwidth of the interference as

Since the desired, interference, and noise signals are Bi = AWi/Wd. (16)I independent zero-mean signals we can separate the
cindpndent z mea ign as e c neats, tIf the interference bandwidth is wider than the bandwidth
covariance matrix into three components, of the element BPFs, we replace the numerator in (16)

4) = 4)d (b, + 4,, (10) with the BPF bandwidth so that Bi represents the relative

where 4 t d E[XJXTI, 4), = E[ X*XTI, and ~bandwidth of the interference at the BPF outputs. The
EIX*X. These matrices are given by autocorrelation function for the interference is given by

()d Rd(O) R(-Td) R(- 2Td) R1'r) = E[*(t)i(t+'r)J

= R(Td) Rd(O) Rd( -Td) (11) 2 Bw,'
R( 2Td) Rd(Td) R((O) = (, sinc 2 exp(jWiT) (17)

( R(O) Ri(- Ti) R,(- 2Ti)\ where cr? is the power in the interfering signal at the

4b, = R,(T,) R(O) R,(-T,) J (12) output of each element BPF.
\R(2T,) R,(T,) R (O) / We assume one-half wavelength spacing between

~() 0 ) elements at the desired signal center frequency. We
(Rh0) 0 0further assume that the desired signal is incident from an

0 o R,(0) 0 (13) angle of 0d (measured from the broadside direction) and a
0 0 Rh(0) single interfering signal is incident from angle 0,. For the

desired and interfering signals the interelement
where R,(-r), and R('r) are the autocorrelation functions propagation delays are given by
for the desired and interfering signals, respectively. (18)

Fig. 3 shows the power spectral density (PSD) of Td (Lic) sin 0 d

d(t). This spectrum is centered about the frequency Wd
and the signal bandwidth is I/T Hz. The PSD is equal to It is shown in 171 that the signal power levels at the array output do
Eh W/Hz everywhere in this region, where Eb is the not change appreciably even if the interference and desired signal center

received energy per bit at each element input. We define frequencies differ by a few percent.
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and the array output using (9). It is straightforward to show I
T, = (L/c) sin 0, (19) that the power in the desired, interfering, and noise

signals are given by
respectively, where L is the element spacing and c is the I
propagation velocity. Pd = - Wt DdW (26)

The interelement propagation delays produce 2

corresponding interelement phase shifts. For one-half I
wavelength element spacing these phase shifts are given Pi = 2 Wq W  (27)

by

7T sin O (20) P,, = Wt4),,W (28)I

and where t denotes the conjugate transpose.

Tr sin 0, (21) From these power levels we can determine Pd, p,, and
p,, the power levels at the output of the detector filter. I

respectively. The desired signal power at this filter output is given by
Using (11), and (14)-(21) we can show that the

desired signal, interference, and noise covariance matrices Pd = P5 /4- (29)
are given by ....

sinc (BA) e " sinc(Bd )e-J2 ' d I

4) ,-= " sine 1I., I sinc (B d) e J~bd (22)

sinc(B,,)e2ll '  sinc (B-) e p I I

I
2/

E, sinc \\2} e1' sinc e2 1  (23)

4D,, = u 21 (24)

where I is the 3 x 3 identity matrix. The three matrices I
given in (21 )-(24) are added to determine the covariance The factor of 1/4 in this equation is caused by the power
matrix 40. loss of 1/2 that occurs during both the multiplication

We assume the reference signal is perfectly correlated (i.e., the heterodyning to baseband) and filtering I
with the desired signal at the input to the first element processes in the detector.
input and uncorrelated with the interference and noise. The noise power at the detector output is given by
Methods for generating a reference signal for the array I /B\
with phase-shift-keyed modulation are described in 121 p,, P,, • (30)
and 131. The reference correlation vector, from (9), is

given by The ratio I/TB in this equation is the ratio of the detector

I ifilter bandwidth (1/2T Hz) to the baseband noise

S . (RA(T)d (25) bandwidth (B/2 Hz). This ratio is the fraction of the

\R,(2T, )/ thermal noise signal that is not rejected by the detector
filter.

where p. is a constant which is determined from the If the baseband interference bandwidth is less than or
amplitudes of the reference signal and the desired signal. equal to the detector LPF bandwidth (i.e., if B, - B,1).

Now that we have determined 4b and S we can then p, = P,/4. However, if the interference bandwidth is
determine the array weights using (7) and the signals at greater than the detector filter bandwidth then we must
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H calculate the portion of the interference power at the array some signal environments. As we shall show in Section
output that lies in the frequency band to which the 111, the conventional LMS array (i.e., the array described
detector is sensitive. We note that the interference PSD at above) often has difficulty nulling interference with
the array output is not necessarily white in this passband nonzero bandwidth. Improved performance against
since the array acts as a transversal filter to the interfering broadband interference can be achieved if TDL filters are
signal [7J. We can calculate the interference power at the used as the weighting elements for the array. Fig. 4 is a
array output in thc frequency band of interest using (27) block diagram of a three-element TDL LMS array. For
and (12). However, for the interference autocorrelation this array each element weight is implemented by a TDL
function R,(r) in (12) we use the autocorrelation function with a single quarter-wavelength delay element and two
of the portion of the interference that lies in the band of complex weights. Compton Ill] examined the optimum
frequencies to which the detector is sensitive. This delay line length and number of taps for suppression of a
autocorrelation function is given by single broadband interferer. This study indicated that theI d) .length of the delay lines is not critical as long as it is less
R;C) = ,  ,sinc- • (31) than X/4B, where X is the signal wavelength and B is the

BI bandwidth. Also, extremely short delay lines should be
With this substitution in (12) when B, > Bd, p, is equal avoided since they require a larger dynamic range for the
to P,/4, where P, is given by (27). Once we have found weights. Compton also shows that, with a single
pd. p,, and p. we can use (1) to calculate P(e). interferer with B, < 0.5, an array with 2-tap TDL

Before we present the results of performance weights has essentially the same output signal-to-
calculations for the system described above we describe a interference-plus-noise ratio (SINR) that a conventional
modified LMS array that offers improved performance in LMS array has with narrowband (B, - 0) interference.

I DESIRED
SIGNAL

IINTERFERENCE

I
4 i 

K4

I K_ "

* ARRAY
OUTPUT

ERROR SIGNAL

LMS FEEDBACK +

REFERENCE
SIGNAL, 7(t)

Fig. 4. Tapped delay line LMS may.
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For the array shown in Fig. 4 we define the signals at III. RESULTS
the tap outputs by i, through i,* These signals are given
by I- this section we present the results from

performance calculations for communication systems that
.xUIt) dl(t) t i(t) ,- t(t) (32) use conventional LMS array and the TDL LMS array

with directional Gaussian interference. Fig. 5 shows the
T - i',) I) (t) (33) performance of the system using a conventional LMS

array for 0,, = . 0, = 80' , B d = 0.1. B = lIT, and
Xdt) = d(i - 2',) i(t - 2T,) + 1i(t) (34) Ej,/T) = 8 dB. 2 For a given value of E,i-q the total

interference power at the array input is the same for each
X(1) = x it3 B, value. From Fig. 5 we see that P(e) increases slightly

= . ) (36) with E,/rq; however, the system performance is
approximately equal for each of the interference

Xe(t) = , (t - 8) (37) bandwidths considered. For the cases shown in this figure

\k here 8 is the delay produced by each delay line, the interference is located outside the main bearn of the

The 6 )( 6 covariance matrices for the desired, quiescent antenna pattern. In these cases the array

interfering. and noise signals are given by

R,) R,,( --T) R,,( -2 7T) Rd( - 6) R,,(- Td--B ) R,( -1,,- 8)
R,(Td) R (0) R( - T,,) RaiT, -) Rt( - 8) R( - T - )

R,(2TjI R,(TI) RA O) R(2Tdl - i) RAT, - 8) R, -B)
R,1(B) R, -T, + B) R,)( -2Td + ) R,A(O) R,I( - T) R,( -_2T) J (38)

RA T,, - ) R(6) R, ( - T + 8) Rd(Td) R,(0) R,I( -- T'd,
R,Bi2T, - 6) RAT, + B) R,(8) R,(2T) Ra(T) R,(O) /( R, () R, -7T,) R,( - 2T,) R,(- 8) R,( -- T, -- 6) R, -2T,- )

R R,(T,) R,(O) R,- T,) RI(T,-B) R,(-B) R,( -T, - )
R,2TI R,(T,) RIO) RI(2T, - 8 R,(T, - 8 R, --B ) (3)
R,IB) R,--T,4B) R,-2T,+B) R1(O) RI-T,) R,(-2T)3

R,(J, +) R,(b) Ri(-T,+B) R,(T,) R,(O) R,(-T,) J
R, (2T, B 8) R, IT, + B) Ri(b) RI(2T,) R,(T,) R,(0) /

R,0) 0 0 R,( - ) 0 0

(I R, Of 0 0 R,( - ) 0
0 0 R00 R,( - B) (40)

R,,(8) 0 0 R,(O) 0
) R,, ) 0 0 RI) 0
\ (10 RI() 0 0 R,(O)/

We now can calculate the covariance matrix for the
composite input signal using (10). effectively suppresses the interference for each of the B,

The reference correlation vector is given by values shown.
Fig. 6 shows the system performance when 0, is

/ R(( )) ,\ reduced to 40'. All other parameters are the same as
R, t1) those of Fig. 5. From Fig. 6 we see that the system

SR,,27d )  41 performance becomes worse as the interference bandwidth
S . R4 increases. This sensitivity to interference bandwidth

R.VI,,- B/ becomes most pronounced when the input INR is greater
R,(27, 8)) than about 10 dB. Fig. 7 shows the performance ,"hen 0,

is reduced further to It)'. We see here that P(e) increases
Now that we have determined ( and S we can by more than 5 orders of magnitude at large values of

determine the array v.eights for the TDL LMS array using
(7) and the signals at the array output using (3). We then ;Note thatr I:,, +1 is he per-elcnment ,tignal~-tit'es rat,' SNR I The

can calculate the bit error probability for the detector three-cment arras % ith no' nterlerente pro\ ide, a 4 77 dti SNR

exacts as ,e did for the system using the conventional mpromnent Hernc the I'lc %aluc at the left hand ILtC it the curxe,

I..MS array, represents the B'SK dtec0t \%hen the ara\ ottput SNR t, 12 77 dA
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0. 0.

I I -'-o
-2- -2i

* -3d -"3

I BO, _ .

0i0

-
-TJ

-sB 5,0.075 -

Bi, 0*, 0.01 .0.025 G 0.05

-, 4°1
-20 -10 0 110 20 30 4 -20 -10 6 20 30 40

Ei/17 (d8) E 77 08)

Fig. 5. Performance of three-element LMS array for several
intrfeenc bandwidths. (O =0 0., , O~ .. B = I/T. E bI Fig. 7. Performance of hr e l me t L Sarray for several
interference bandwidths. 8 dB.) interference bandwidths (0, = 0*. 6, = 10%, = 0.1, B = IIT, El

Tj -8 dB) q= 8 dB.)

0- Two somewhat conflicting processes occur as we
move the interference arrival angle from 80 to 10*. First.
the system performance generally decreases as we movethe desired and interfering signals closer together. This-2- decrease is caused by the increase in insertion loss for the

3- desired signal as we move the pattern null closer to the
desired signal direction. The second process that occurs

-- 4- as we move the interference closer to the broadside
0.075 direction is the improved ability of the array to steer a

broadband null on the interference. This ability is a result0 .9 0 of the reduced interelement poatintime for the-6./interference for small 0, values. In the limiting case,

-7- .05 when 0, = 0 (and T, = 0), the array can steer an
infinite bandwidth null on the interference.-From Figs. 6 and 7 we see that the system

-9 performance becomes worse as the interference bandwidth
0.010 increases. However, in each of the cases shown in these

-40 O"figures, the interference lies totally within the bandpass of
-20 40 0 10 20 30 40 both the input BPFs and the detector LPF. In order to

Ei/ij (dB) better understand the effects of the array input bandwidth

Fig 6. Performance of a three-element LMS &ay for several and the interference bandwidth on the system
interference bandwiths. (9 - 0". e, - 40'. B, - 0.1, B - IT, Ebl performance, we examine this performance for 4 cases:

-n -= 9dB.) Case A: Bd = 0.1,0 + S <S0.075, B = IT.
E,/,q for each of the interference bandwidths considered. 2  Case B: Bd = 0.01, 0+ S Bi :S 0.075, B = lIT.
The increase in P(e) for INR values below about 10 dB Case C: Bd = 0- 1, 0+ S B S 0.075,B = 20/T.H is caused by the insertion loss for the desimed signal that Case D: Bd = 0.01, 0 S B, -5 0.075, B = 20/T.
occurs when the array forms the null on dte interference. In each case 0d = 40° ,0, = 60% and Ed/,I = 8 dB.
An array with more elements would have better resolution In case A the array bandwidth is equal to the desiredH and would be better able to steer pattern nulls and signal bandwidth and the interference bandwidth is
maxima close together. always less than the array bandwidth. For Case B the

'The smallest bandwidth considered is ered 0' to indice e desired signal bandwidth is reduced by a factor of 10.
small but finite interfere= bcndwidre Is ae 0 to indidthvery The array input bandwidth is also reduced by this factor
were truly 0, the intererence would be a CW siplg ad M an grgodic since B = lIT in both cases A and B. In case B some ofHassan random proces as we have llum. the interference signal is blocked by the input BPFs when
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B, is greater than 0.01. B = 20iT for cases C and D. The we had for case A for these B, values.' For the other
other variables are the same as in cases A and B, cases shown in this figure the input BPFs reject some of
respectively, the interference and the performance improves as the

Fig. 8 shows the system performance for case A. interference bandwidth increases. Therefore, for the
From this figure we see that the system becomes sensitive minimum bandwidth system (i.e., when B = lIT) a
to the bandwidth of the signal for values of E,'1 greater fixed-power interference signal is most disrupting when

than approximately 10 dB. its bandwidth is equal to the desired signal bandwidth.
Fig. 1() shows the results for Case C. As in Case A.

O" the interference is passed by both the input BPFs and the

0 075---
0 0 5 ____ 0- 0075

-20 025 0 05
00- 0 -0o

-~ -2 0 0 2 5

-3 001

-5-B, 0.

-_ -5-

-7 - -9-

-20 -l0 0 10 2 0 3b 4

IH)g X t'cr rmnm e of threc-elemtnt LMS array for seeral E ( T 3 4

interferen.e hand' idths. case A Ei/17 (dB)

Fig 1t) Pertortarice (t three-element LMS array for sc.eral
Fig. 9 shows the results for case B. The two curves in interference bandahihs. cae C

this figurc that sho\, the pcrformance when B, = 0' and
B, - 0.)1 are the same as the corresponding curves in detector filter. The only difference between Cases A and
Fig X For these cases the interference is passed entirely C is the increase in the array bandwidth by a factor of 20
K the input BPFs and we see the same performance that for Case C. We see that this increase has two effects.

First, a large hump appears in the P(e) versus E,/-q
0- curves. This hump is caused by the larger thermal noise

power at the BPF outputs for the larger value of filter
- I bandwidth. As the input interference power increases, the

-2 array does not begin to form a null on the interference
0 - until the interference and noise power levels at the BPF001--- outputs are approximately equal. In case C. the residual

interference power at the array output when E,, -, is
-4/ between approximately 5 and 25 dB causes the hump in

8,= the curves. The second effect that we note is the

- 0 025 movement of the point where the curves begin to diverge.

( -6- In case C. where the noise power at the BPF outputs is
J 005 13 dP higher than it is in case A, the E,,-9 value where

-7 the curves begin to diverge is approximately 13 dB higher
/ *0075 than it is in case A.

Fig. II shows the results tor case 1). For this case the/ ,

9- interference is always passed by the input EPFs. but it is
partially rejected by the detector LPF wAhen B, - 0.01.

-10 , When B, increases above 0.01 two conflicting processes I
-20 -10 0 10 21 30 40 occur. First, the total interference power at the array

E,/7) (dB)

F ) P' .'rtr an..c wf three-clement I.MS array for several 'We noie thai the array p'rtormanme is esentiall mnde nd i ol H,,
interference hand .ths, case B for B - () I (91
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* ~ -3"-
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0.05
-- 0.075

* 9 -9
-I0 -10

-20 -o 6 10 20 30 40 -20 -ib 6 1O 20 36
Ei /71 (dB) Ei/7 ) (dB)

Fig I I Peformance of three-element LMS array for several Fig. 12 Performance of three-element tapped delay line LMS array
interference bandwidths, case D. for case A.

output increases since the array has more difficulty IV. CONCLUSION
nulling a broadband interfering signal. Second, the
detector LPF rejects some of the interference. The first of In this paper we have calculated the performance of a
these effects causes an increase in P(e) while the second BPSK communication system that uses an LMS adaptive
effect causes a decrease in P(e). From Fig. I I we see array to protect the system from Gaussian noise
that the second effect is dominant for the case D signal interference. We showed that the system performs best
scenario. P(e) is highest when the interfering bandwidth when the interference is located outside the main beam of
is equal to the desired signal bandwidth. the quiescent array pattern. The system is most vulnerable

We next examine the performance of the three- to broadband interference when the interference arrives
element TDL LMS array with Gaussian interference. As from a direction near endfire since this is the direction
an example we consider the same signal scenario used in where the interelement propagation delay for the
case A above. Fig. 12 shows the performance of the TDL interference is largest. We found that the system
LMS array for this scenario. From this figure we see that generally performed best when the array bandwidth was
this array achieves the same performance for each of thc as small as possible. The interference was found to be
B, values that the conventional LMS array had for most effective when its bandwidth was equal to the
B, = 0. These results support the conclusion made by desired signal bandwidth. This was found to be trueI Compton in I I l ] that, with a single interference signal regardless of the array bandwidth. Finally, we found that
(with B, less than approximately 0.5), the TDL array the performance of a system using the TDL LMS array is
performance is equal to that of the conventional array not dependent upon the interference bandwidth for a
with CW interference. single interfering signal.I

I
I
I
I
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I' I. INTRODUCTION

Array per =n of a least mean square (LMS)
S Adap ive Array Behavior adave ar (1] ca be ,feced by modulati on a

interference signal. For example, pulsed interference can

with Periodic Phase make the weights in an adaptive aay vary between two
sets of values, one when the interference is on and the

M odulated Interference other when it is off 12). Interference modulation has two
deleterious effects on an adaptive array. First, it can
cause the array to modulate the desired signal. Second. it
can make the array output SINR (signal-to-interference-
plus-noise ratio) vary with time. In a digital

ABDULAZIZ S. AL-RUWAIS communication system, such SINR variation usually
King Saud Univemity results in an increased bit error probability. The effects of
Saudi Arabia interference modulation on an array are usually most
n.T. COM"TON. JiU. significant when the modulation rate is close to the
ElectroScience Laboratory natural response speed of the array and when the

interference arrival angle is close to that of the desired
signal 12-4].

In previous studies, the authors have examined the
effects of pulsed interference 121, interference with

We consider a least mean square (LMS) adaptive array [1 sinusoidal envelope modulation (3], and interference with
receiving a phase modulated Interference signal. The phase arbitrary periodic envelope modulation 141 on adaptive
modulation Is assumed to be periodic and to have filie bandwidth, arrays. Each of these studies involved envelope
Under these assumptions, we determine the time-varying army modulation but not phase modulation.
weights, the modulation on the array outpat desired signal, and the The purpose of the present paper is to extend the
time-varying output interference-to-ooaie ratio (INi) ad SINR earlier work to the case of phase modulated interference.

(slgnal-to-lateerence-ls-noise r ). In Section I1 of this paper, we formulate the problem of

We present numerical results descr bing the behavior of a 2- an adaptive array receiving an interference signal with

element adaptive array that receives anterference s with periodic phase modulation. We solve for the resulting
pdtime-varying weights in the army, and from the weightsinuaial phase m odulation. We s dow h od la pmeter we determine the output desired signal modulation and(arrival angle, power, medalatln Iesi, and ~mod~utonecy) SINR variation. In Section 111, we present numerical

d iect the performance of the array. results for a 2-element array that receives interference

with sinusoidal phase modulation. We show how the
interference modulation parameters affect the desired
signal modulation, the SINR variation and the bit error
probability when the desired signal is a DPSK
(differential phase-shift keyed) communication signal.
Section IV contains our conclusions.I
II. FORMULATION OF THE PROBLEM

Assume an adaptive array consists of J isotropic
elements with half wavelength spacing. as shown in Fig.
I. Let ji(r) denote the analytic signal received on element

j. The signal .,(:) is multiplied by a complex weight wj
Manuscript received September 24. 19"5, revised November 17, 1986. and then summed to produce the array output 1(). The

This work was supported in pan by Naval Air Sysems Command under array weights are controlled by LMS. (least mean square)
Contract N19-82-C-0190 and in pat by the Joist Sefvices feedback loops [II], which obtain each weight w, by
Ekcuincs Progam under Cotract N04-17SC4}049. integrating the product of ,1(t) with the error signal i(t).

Authors' addresses: AI-Ruwais, Dept. of Electrical Eagineering. King The error signal is the difference beiween a reference
Saud University. Riyadh, Saudi Arabia; Compton. Jr.. ElectrScienc signal f(t) and the array output 1(t) [1]. The array
Laboratory. Dept. of Elecucal Enginereng. Ohio State University. weights satisfy the differential equation
Columbus. OH 43210.
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where W = [w, W2 .... wj]' is the weight vector, t is K = J - . (9)
time, 4) Is the covariance matrix, We assume %Id is a random variable uniformly distributed

4, = E[X*X' ]  (2) on (0,21r).

S is the reference correlation vector. Next, assume a phase modulated interference signal
arrives from angle 0,. The interference signal vector is

S = ElX*-(t)l (3) x, = Ae(Wol+*' U,(t) (10)

and k is the LMS loop gain. In these equations. X is the with
signal vector, F e;:' /"l
X = [ )1(1). j,(1) .... XJ (tl)]T (4) e t ,. r,) - ,j 1

T denotes transpose, * complex conjugate, and El - U,(r)=leJ1 "" ()I e
expectation.

We assume a desired signal and an interference signal LeI1'Y,,t-7'J-K b'J

are incident on the array. and also that independent where y,(t) is the phase modulation as received on
thermal noise is present in each element signal. The element 1, A, is the interference amplitude, and tIo, is the
signal vector then contains three terms, carrier phase angle. The variables T, and c,, are the
X = Xd + X, + X,, (5) interelement time delay and carrier phase shift.

where Xd. X,, and X,, are the desired. interference, and T, it sin 0 (12)
noise vectors, respectively. WO

Let the desired signal be a CW (single frequency) and
signal incident from angle 0d relative to broadside (0 is
defined in Fig. 1). The desired signal vector is then Ct, = wo T, = iT sin 0,. (13)

X, = Ad e
"
' 

I"%U d  (6) We assume tlo, is a random variable, uniformly distributed
on (0.2 7) and statistically independent of 'dO.

eFinally, we assume each element signal contains a
zero-mean, independent Gaussian thermal voltage fi,() of
power a'. The noise vector is

1M 7tt X, = [HIM , n2(t), ..... nj(t)] T  (14)

where

E Ihi*(t)n4.(t)I = .bj4, 1 j.k J (15)

ARRAY with 6,4 the Kronecker delta. The fi,(t) are assumed
LS -OUTPUT statistically independent of both d and 4,,.Fil ' Under these assumptions. the covariance matrix in (2)

is the sum of a desired. an interference, and a noise term.

REFERENC 0o = P + (), + 4),. (16)
SIGNAL

F(,) The desired signal term is
Fig I. LMS adaptive array 4)d = EIXTX I = AUU 17

where Ad is the amplitude, wo is the carrier frequency. $d The interference term is
is the carrier phase angle, and U, is a vector containing
the interelement phase shifts. , = E[X*XTI

"= ~ ~ e'1 A? t l("b*' h ... el.. A/ 6 1,

AI e ...~t e ~ 5 A ' A-A 2  1. . (]8)

C K 1b, Ad I c' '* A - 116i, 1

Ud = I1. e - '. e-A }T (7) where

where p(t) = y,(t- qT,) - y(t-pT,) (19)

(baj = iT sin 0d (8) and where p and q are integers in the range 0 5 p. q s
and where. to simplify later notation. we let K. The noise term is
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€, =o~l(20) 
1,

with I the identity matrix.

To compute the reference correlation vector S in (3). = input interference-to-noise ratio (INR) per element
Swe must specify the reference signal f(i). In practical (28)

applications, the reference signal is derived from thearray output [5-71. To make the array perform properly, and where
it must be a signal correlated with the desired signal and t' = kar2t = normalized time. (29)

I uncorrelated with the interference. Here we assume the

reference signal to be a replica of the desired signal, Also, note that the constant on the right in (27) will
i(t) = Ae c'(0 ' *," (21) just appear as a scale factor in the solution for WW). It

e A, has no effect on the array output SINR to be discussed

where A.is its amplitude. Equation (3) then yields blwHec.. , itbelow. Hence we arbitrarily set I to eliminate it.

S = AAdU:. (22) Eq. (27) is then3 When (16) and (22) are substituted into (1), one finds
that the weights satisfy a system of differential equations dW(:') VT W(')-- + 14)2 + , Y. ,,''~ wr_
with a constant vector S on the right but with time- di' p.o q.o

varying coefficients due to 4),. This equation may be 3
solved for the weights as follows. = (0)

First, we write the interference covariance matrix in a Next, so that we may solve (30), we make the
more compact form. We define the J vectors, assumption that the phase modulation -y,(t) is a periodic

Vo = [ I, 0, 0 .... 0 , 0 1 T function of time. If -y,(t) is periodic, the functions
exp(jq(:')) are also periodic, so each of them may be

V = 0, e - O,T expanded in a Fourier series. To simplify later notation,
-we also include the constant t, in this expansion. Thus,

V2 = [0, 0, e - 2 ", 0 0T we write

U VK 10, 0, 0 ... e-S0e T. (23) (31)

Note that these J vectors form an orthonormal set, where fp, is the Ith Fourier coefficient of t, exp(jq(t'))
S=and wi is the normalized fundamental frequency of

-,r jk. 0 -<j. k - K. (24) y,(t'). i.e.,

In terms of these vectors, 4), in (18) may be written
w. - " (32)

2= A 2 e _p tV* (25)
p-0 q(o where w, is the fundamental frequency of y, (t). Note that

so (1) becomes if p = q, then q(t') = 0, so the series in (31) contains
only a zero frequency term, i.e.,

+W kJ30 d d T , flop = C810. (33)dt P-o q-o it is ea shown that

+ c 2lJW = kAAU. (26) =')Pq (34)

Next, we normalize (26). Dividing by ka2 givesI • and
dW(t') K K37 17- + 4 + I. e -'M"V;VTJW(t') f,(p + If, (+q.,) = fipe (35)

t'pO q.O 4 where T' = k 2t,, with T, given in (12).

Ar V-Lu: (27) In addition to assuming -y,(t) periodic. we also assume
athat the bandwidth of the interference is finite, i.e.. that

where (31) contains only a finite number of nonzero terms.
Specifically, suppose the coefficients in (31) are zero for

4) = I + Gu Ill > L, where L is some integer. Then
L

e " f=eqeJ1W;1', .  (36)
a2 /- -L

= input signal-to-noise ratio (SNR) per element Since (30) is a linear differential equation with
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periodic coefficients, the solution for W(t') is a periodic Also, from (7) and (23). one finds
function of time after any initial transients have died out 10e64, -6
181. In this paper, we do not consider the initial V-U = e 0 S a S K (44)

transients, but only the periodic steady-state solution. Equation (41), when written out, yields a finite system of
Once initial transients are over, W(t') can be written as a equations of the form,
Fourier series, MA = B (45)

W(t') Ce " (37) where A is a vector containing the unknown coefficients
n= -x 1n/ -

where C, is a vector Fourier coefficient. Substituting this A = IcaNO. aNKa(N- i),.

series into (30) and enforcing the resulting equation for
each frequency component separately gives aE,- -N.. . .N) 1 -,V)KJ] "  (46)

L K + VVC" B is a vector obtained from the right side of (41), and M
((1)2 + jn W1) C + E E E' fq mVpC_9is the matrix of coefficients obtained from the left side of= -L p-o q=o (41). The results presented below have been obtained by

= VIZUa 8, 0. - < n < . (38) solving (45) numerically.
Equation (38) is an infinite system of vector equations, For this method to yield accurate results, N must be I
Eqation (38 isach ninite To sol e m oftor esueth s chosen large enough that at least 2LJ of the ak areone for each n, To solve for the C o, we assume there is essentially zero on each end of the vector A in (46). If
some integer N such that the Fourier coefficients C. are this vector has 2LJ zeros on each end, the solution

adequately approximated by a finite sum,e W(') can be obtained from (41) will yield the same result as theadeqatel aproxiate by fiite umsolution of the infinite system in (38). In practice, a
N suitable value of N may be determined by increasing N

W e) . (39) until the additional a,,j obtained remain negligible and

until the ac,,I in the middle of vector A are unaffected by
Such an approximation will hold because the feedback further increases in N. Experience shows how large N
loops controlling the array weights in W(i') are lowpass must be in specific cases. Once the On. have been found.
filter loops that cannot respond above a certain speed. the C, may be found from (40) and W(t') from (39).U

If we set C. = 0 for Inm > N, then (38) yields a Time-varying weights have two effects on array
finite system of equations for the remaining C,. Each performance. They cause the array to modulate the
vector C. has J scalar components, so the result is a desired signal, and they cause the array output SINR to i
system of (2N + I)J linear equations in the unknown vary with time. These effects are calculated as follows.
scalar components. One could solve for WW) by solving Given a time-varying weight vector W(t'), the desired
this system of equations numerically. However, solving signal component of the array output is
(38) is greatly simplified if we first express each C, in I
terms of its components along the vectors VA in (23). i(t') = AdW (t')Udej( +' ' ) (47)

(Since each C,, has J components, the J orthonormal 1vectors Vk can be used as basis vectors.) We write where ow = w 0/k&r. The modulation on ga(t) isI
o ccontained in the term AdWT(t)Ud, which may be written
K

C = cX,kV* (40) AdW T (t')Ud = ad(')e 4" . (48)
Then ad(t') AdlWT(t)Udl is the envelope modulation

where the 01,k are scalar coefficients. The coefficient a,,k  and ll(t') = (WT(t')Ud is the phase modulation. We
is the component of C,, along the unit vector Vt'. define ad,(t') to be the envelope normalized to its value
Substituting (40) into (38), multiplying the result on the in the absence of interference.
left by VT (for a = 0, 1 ..., K) and using (24) yields

a + L K ad,(t) = AdlWrUdl (49)JnwcJ'ona + E Qaot
O l +  

E flaq(L(n-1)q Ad

k=O 1-L q=0 where Wo is the steady-state weight vector that would

= / d(VTUJ)6,,.O 0 - a s K (41) occur without interference.

where WO = (4 )d + 4),,/-S (50)

Qa= ao4)2VV. (42) (4 d, 4),, and S are given in (17), (20). and (22).) We

Because we assume C, = 0 for inI > N, the coefficients present our results below in terms of ada,(t'). rather than

a,,q in (41) are nonzero only for Inl -N. The variable ad(t'), because it is easy to see the effect of the
Q., is readily found from (23) and (28), interference by comparing ad,(t') with unity.

The output signal powers may also be computed from
Qo = 8ok + Gde )

- 4  (43) W('). The output desired signal power is
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Pj(t °) = IEIid(I') -] = !A31WT(j')UdjI. (51) Because

The output interference power is J-10'g (62)

P,(t) = A~jW(1'U,(1)j1 52)we also have from (34).
P, -) AIWT(t )U1(')12  (52)

2 1fio = =~-,o (1)floi (63)

i where U,(t') is the vectot of phasors in (I1) but written
in terms of normalized time r' = ker2t. The output To truncate the series in (60), we use the fact that

thermal noise power is J,(z) a 0 for IIJ > : + 1. (64)
_ _

P _(t') L wT(II)W*(gl) (53) Thus, we approximate
2L

From these quantities. the output interference-to-noise ie j%0l(1= 1 fjoie j" ' (65)

ratio with

output INR = P( 
(54) witTh

L = W+ 1) f20 sin T + 1} (66)
and the output SINR where {r} denotes the smallest integer greater than or

SINR P,I ( equal to r.
P,(t') + P.(t') With these assumptions, we have solved (41)

may be computed as functions of t'. numerically for the ct.k and then computed the C. and

In the next section, we apply these equations to a 2- W(W') from (40) and (39). From W('), we have

element array receiving interference with sinusoidal phase calculated the envelope and phase modulation on the

modulation. output desired signal from (48) and (49) and the output
INR and SINR from (54) and (55).

We present our results as follows. In subsection A
Ill. A 2-ELEMENT ARRAY below,,we show typical curves of desired signal

modulation and output INR and SINR as functions of

Consider an array with two elements, so J = 2 and time. In subsections B-E, we describe the effect of each
uI. Let the interference have sinusoidal hase interference signal parameter on the desired signal

modulation, modulation. In subsection F, we assume the array is used

y( = sin(w,t') (56) ina DPSK communication system [101 and show how the
bit error probability is affected by the phase modulated

where j3 is the maximum phase deviation (or modulation interference.

index) and w., is the normalized modulation frequency.
From (19) and standard trigonometric identities, one finds A. Typical Waveforms
that

si r _.( _1- Fig. 2 shows curves of the normalized envelope

e'X0 s,,n= e . 2 (57) modulation aj,(t') for the specific case where 0d = 30' ,

where
d

0,

(and T = ka2T,). Using the Fourier series expansion [91 10.

ej: = J,(:)e"'P (59) .'

where J,(z) is the Bessel function of the first kind of 0

order 1. we find

= ,1e~0 ......, e = ./tot e s'"i"" (60) " ..I) ' Et

where %0 odes" .. o .o o.oo
TIME

, Fig. 2. ad.,() vemus time. 0, - 30*. ,- 45". ., = 10 dB.

f J 3  (0= e 2 2(61) 4, - 30dB.f.' - I02, ; - 10'.
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0,= 45', ,d = 10 dB, , = 30 dB, f, = = 101, the rate of change of the interference phase becomes too
I 2w large for the array weights to follow.

f; o-- = 108 and for 1 101 , 1l0, 10, and l01. The curves above were intended merely to illustrateThese parameter values have been chosen to illustrate that typical results. In general, one finds that the array

the envelope modulation on the desired signal can be behavior changes substantially as the signal parameters
substantial, especially for larger values of 13. (The reason 0 d Ed. 0,. k,, f',, and 13 are varied. In subsections B-E,

that ad.(") < I even for small 13, when there is little we show the effect of each of these parameters on the
envelope modulation, is that a 2-element array has desired signal modulation. Then, in subsection F. we

insufficient resolution to separate interference at 0, = 45' show how bit error probability is affected by the phase
from the desired signal at 0d = 300. The desired signal is modulated interference when the array is used with a U
on the edge of the interference null and suffers the DPSK communication signal.
attenuation seen in ad,(t').) To characterize the desired signal modulation, it is

It turns out that for this 2-element array, phase helpful to define the following quantities. First, let amd,
modulated interference does not cause phase modulation and am, be the maximum and minimum values of at'
on the desired signal. This result was discovered by during the modulation period. Then, let
calculating T() for numerous values of Od, td, 0,, ,, ai, - am,,

13. andf,,, One finds that d(t') does not change with m = (67) I
time regardless of the signal parameters. The reason for
this behavior is as follows. Both the amplitudes of the am,, is the peak value of the envelope during the period,
two weights are equal at each instant of time. The phase and m is the envelope variation normalized to its peak. It

angle of each weight contains a term constant with time, may be thought of as "fractional modulation", analogous
which depends on the interference arrival angle (and is to percentage modulation in AM. In subsections B-E. ve
different on each element), and a term that varies describe the effect of each signal parameter on ama, and

sinusoidally with time. The sinusoidally varying term has m.
the same amplitude but is 1800 out of phase on the two
elements. When a desired signal is passed through these B. The Effect of Angle of Arrival
weights, the phase modulation produced on the desired I
signal by one weight is 180' out of phase with that Desired signal modulation is small when 0, is far'from
produced by the other weight. The resulting array output Od. When 0, approaches 0 d, the envelope variation m
signal contains only envelope modulation, no phase increases and the peak a,,,, drops.
modulation. Figs. 5 and 6 show typical curves of m and a,, as

Figs. 3 and 4 show typical curvesof the output INR functions of 0, for Od 0 , ,d = 10 dB, E, = 40 dB,
and SINR as functions of time, over one period and for f,, 103, and f; = 101. Four curves are shown, for
the same signal parameters as in Fig. 2. The figures show 13 = 2 X 101, 4 x 103', 8 x 10'. and 10'. It is seen U
that as 13 is increased, the average output INR increases, how m increases and ama, drops when 0, approaches 01.

the SINR decreases, and the INR and SINR variations (When 0, is very close to 0d , m drops to zero. This
with time are more pronounced. The reason for this peculiar behavior occurs because when 0, = 0,. the I
behavior is that at low P, the array feedback is able to desired signal is nulled. In this case it turns out that am4,
track the incoming phase modulation. But as 03 increases, and am,, become equal, so m drops to zero. However. the

0_ I
oTIME

'. +: It n0 to

'. I

" a.o 'II I "

00 0.02 0005 0.7 0010

ono

Fig 3 Output INR versus time e4, 30'. 6, =45', k, 10t dB. Fig. 4. SINR versus time O = 30'. 0, 45'. f,, = 0 dB
,= 30dBf. = 102,f; = 10'. ( 3dB, f 10'. f,, = 10'
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Fig. 5. m versus 0,. 0, = 0, td 10dB, t, = 40dB,f, = 103, Fig. 6. a,. versus e,. 01 = W G = 10dB, t, : 4OdBf = 103,
A= 0'. f; = ios.

behavior of m for 0, = Od is of little importance, since interference phase must vary rapidly enough to changethe desired signal is nulled anyway.) significantly during the time it takes for the interference
to propagate across the array. When this happens, the

C. The Effect of Modulation Index and Frequency result is a time-varying interelement phase shift. (A time-
varying interelement phase shift is electrically equivalent

The envelope peak a,, is largest at low"f, and drops to a time-varying arrival angle.) The feedback then
as f, increases. The variation m peaks at intermediate f.' produces time-varying weights in response.

Figs. 7 and 8 show typical results, for the case 0d =
300, 0, = 45", d = 10 dB, i = 30 dB, fg =
101 and for 1 between 2 x 103 and 104 . At high f,, D. The Effect of Interference-to-Noise Ratio
bot Oa,, and m drop off because the array has a limited
speed of response that prevents the weights from The input INR has only a small effect on the behavior
responding to the modulation whenf,, is too high. At low of a,, but greatly affects the envelope variation m.
f, m is also small because, with a low modulating Figs. 9 and 10 show ama and m versusf, for 0 d =
frequency, the interelement phase shift for the 30*, 9. = 45*, d = 10 dB, 3 = 104, f; = 108 and for
interference does not vary with time. To see this, note values of ki, the input INR, between 20 and 45 dB. As
that only the interelement phase shift affects the array Fig. 9 shows, amg is relatively unaffected by the input
weights. (A constant carrier phase angle, such as *i in INR. However, as seen in Fig. 10, the peak value of m
(10), does not appear in the interelement phase shift and increases quickly with input INR. The reason is that the
hence has no effect on the array weights.) In order for the larger the INR, the higher the speed of response of the
interelement phase shift to vary with time, the loops.

o 2

a x i '

1S x loll

I.*00

Si . V O. T

- ,.o,--....,,\ ,, .,o,

Fig. 7. a , versus f ,.8 , 301, 0,-45*,Fa- dB. ,,- 30 dB, Fig. 8. mversus f,. 0, - 30*., 0. -45"., I 0dB, t ,- 30 dB.

f; = log A = 10,
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Fig 9. a., versusf,. 0, = 300. 0, = 45', Ed 10 dB, 13 10. Fig. 10. m versusf,. Od = 300. 0, = 450, G = 10 dB, 1 = 10'. 

f; = tO. f; = 10
8 .

- SINR W')

E. The Effect of Desired Signal-to-Noise Ratio P,() = le (68)

Desired signal modulation is greatest for low SNR Fig. 13 shows typical curves of P, as a function of f,'
and drops as the input SNR increases, for 0 d = 30 ° , 0, = 450, E = 10 dB, k, = 30 dB,.f, =

Figs. I I and 12 show typical results. Fig. II shows 108 and for 13 between 2 x 103 and 104. Fig. 14 shows
m and Fig. 12 shows am,, both versus f for 0d = 300, P, versus f, for 13 = 104 and for several values of input
6, = 45', , = 30 dB,f; = 108, p = 104, and for four INR. At low f,, when the modulating frequency is
SNRs (Fas) between 10 and 40 dB. As may be seen, the small, 15 does not depend on 13. The same value of P,
peak ama,, approaches unity and the variation m drops as would be obtained if a CW interference signal arrived I
the SNR increases. with the same INR. In the frequency range 102 < f4 -

104, P, is affected by 13 because this is the range where

F. Bit Error Probability the desired signal modulation and the SINR are affected I
by 13, as seen above. At high f,,, the array weights no

To evaluate the effect of the time-varying SINR, we longer track the modulation, and P, approaches a constant
assume the desired signal is a DPSK communication value.
signal [10]. We assume that the bit rate of the desired
signal is much higher than the modulation frequencies in
ad(t) and that the reference signal f(t) is a replica of the IV. CONCLUSIONS
desired signal. As discussed in (2, 3], under these
assumptions we may obtain an effective bit error We have calculated the periodic steady-state weights
probability P, by averaging the instantaneous bit error of a 2-element adaptive array receiving interference with
probability PW) over one period of the interference sinusoidal phase modulation. This interference causes the U
modulation, where

e'4.

0

o',m , "\,30d304O B 67

o. Idod

01 0 . . ..0. . . ..I U"'. ..l ..

8 / 102d9

-R2 O O AD

o 4'o U
00

0 10000 l0. i0l log 10, lot I0
fin. f's

Fig 11. m versus f.,% 30* 0, =450, F = 30 dB, 0 10'. Fig. 12. a.~ versus f., 0 30'0. ,= 450, E 30 dB. 0 = 0'.
=; t01 f = loft.
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Fig. 13 Bit error probability versus f. Od = 300.° e, = 450.  Fig. 14. Bit error probability versusI,. e = 30. , 9, = 45 ,

F, = lOdB, IL = 30 dB.f f= 10'. L= lOdB. = 104,f, 10' .

array weights lo vary periodically with time in such a performance. We find that the desired signal envelope
way that the desired signal is envelope modulated but not modulation is largest when the interference arrives close
phase modulated. We have examined the effects of the to the desired signal, when the interference modulation
signal parameters (arrival angles. powers, modulation index is large, when the interference power is high, and
index, and modulation frequency) on the array when the desired signal power is low.

I

I
I
I

I
i
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Protection of a Narrow-Band BPSK
Communication System with an

* Adaptive Array
MATTHEW W. GANZ, MEMBER, IEEE, AND R T. COMPTON. JR.. FELLOW, IEEE

Abstract-This paper describes the performance of an adaptive array models used in these studies were only appropriate when the
when used with narrow-band BPSK communication signals. A previous array bandwidth is several times the desired signal symbol
paper 111 described the performance of an adaptive array with a rate.

standard BPSK signal when the array bandwidth is several limes the In this paper, we examine the performance of an adaptive
signal bandwidth. These earlier results are extended to the ease where the array with BPSK signals when the array bandwidth is as small
array bandwidth is as small as possible, equal to the desired signal symbol as the desired signal symbol rate. In order to operate a system
rate. To realize such a bandwidth reduction, it is necessar) to reshape the in this manner, it is necessary to filter the standard BPSK

BPSK signaling waveform before transmission to prevent intersymbol signal prior to transmission so that the signal bandwidth (in
interference. This is done b. passing the BPSK signal through a pulse- Hz) equals the transmitted symbol rate. This narrow-band
shaping filter at the transmitter. The performance of the optimal detector BPSK signal allows the array bandwidth to be set equal to the
for the narrow-band BPSK signal is determined when this detector signal bandwidth without introducing intersymbol interference

operates behind an adaptive array that is subjected to CW interference. (1S). The narrow-band BPSK signal has the property that it

The bit error probability is obtained as a function of the desired signal allows the same P(e) as conventional BPSK with white
and interference powers and arrival angles as well as the array bandwidth. Gaussian noise. We calculate the performance of the adaptive

array with such a signal when both white Gaussian noise and

1. INTRODUCTION CW interference are present. We calculate P(e) for the
Etucombined array and BPSK detector as a function of the desired

A DAPTIVE array a:tennas can be used to protect signal and interference powers, the signal arrival angles. and
.xcommunication systems from interference. The array the array input bandwidth.
suppresses interference by steering antenna pattern nulls in the Section II describes the narrow-band BPSK modulation
direction of the interfering signals). The LMS array, due to technique and calculates P(e) when the BPSK signal is
Widrow et al. (1], is most often suggested for communications corrupted by CW interference. Section I. presents a descrip-
applications. tion of the LMS array and its operation. Section IV describes

The LMS array steers a pattern beam in the direction of a the performance of the combined LMS array and the BPSK
signal correlated with a locally generated reference signal and detector. Finally, Section V contains the conclusions.
steers nulls in the directions of signals uncorrelated with this
reference signal. Methods of generating a suitable reference I. THE NARROW-BAND BPSK COMMUNICATION SYSTEM
signal for the LMS array have been developed for several In this section. we describe a narrow-band BPSK communi-
types of desired signal modulation, such as binary phase-shift cation system. We calculate P(e) for this system when the
keying (BPSK) [21, quadrature phase-shift keying (QPSK) (3], received signal is corrupted by additive white Gaussian noise
conventional amplitude modulation (AM) (41, and frequency- and CW interference. Fig. 1 shows a block diagram of the
shift keying (FSK)t[5], [6]. communication system. The baseband nonreturn to zero

Early adaptive array studies used the signal-to-interference- (NRZ) signal is filtered prior to carrier modulation and
plus-noise ratio (SINR) at the array output as the measure of transmission to limit the bandwidth of the BPS'K signal. We
system performance [71-[9]. However, the bit error probabil- choose a pulse-shaping transmit filter with transfer function
ity at the receiver output P(e) cannot be determined from Hr(, ) gien L,

performance of communications systems with adaptive arrays I
using P(e) as the figure of ment [11)-[13]. These studies ___<-

considered the performance of adaptive arrays with continuous wT T
wave (CW) interference when the array bandwidth is several Hr) sinc
times the symbol rate of the desired signal. These studies (1)
showed that the array performance inproves as the array input 0, -
bandwidth is reduced. However, the signal and detector T

Paper approved by the Editor for Signal Design. Modulation, and Detection where sinc x) denotes sin (x)/x and T is the bit duration.
of the IEEE Communications Society. Manuscript received December 4, The power spectral density (PSD) of the NRZ baseband
1986; revised April 21, 1987 This work was supported in pan by Naval Afr signal at the filter input is joroportional to sinc: (WT/2) [14].
Systems Command under Contract N00019-g5-C-0 119 and in part by the Joint Therefore, the PSD of the signal at the filter output is a
Services Electronics Program under Contract N00014.78-C-0049 with The constant for Iw I < w/T and zero outside this region. Since
Ohio State University Research Foundation. th

M W Ganz is with the Massachusetts Institute of Technology Lincoln the signal at the filter output satisfies the Nyquist pulse shaping
Laboratory. Lexington. MA 02173. criterion, the system is free from ISI [15]. The filtered

R T. Compton. Jr. is with the ElectroScience Laboratory, Department of baseband signal modulates a carrier signal cos (wAr). The
Electrical Engineering. The Ohio State University, Columbus, OH 43210. channel attenuates the signal and adds white Gaussian noise

IEEE Log Number 8716582. and (possibly) CW interference.

0090-6778/87/1000-1005$01.00 K) 1987 IEEE
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wwherer-,)t+ [ -Y d - ,J. Since Od And J,, are each

uniformly distributed on 10. 2w, r is also uniformly distrib-
uted on this same interval [17]. Each thermal noise sample at
the output of the receive filter is an independent zero-mean

.... 41, Gaussian random variable with variance i7/4T. We denote the
SIG", noise sample at the kth bit by Z,(k).

We assume that "0" and "I" bits are equally likely. The
Fig, I The narro-band BPSK sysprobability of error, given the random variable F, is given by

The signal at the receiver is given by P(e2)= Ir)+ P(e ,Ir). (7)

Z(t)=d(t)+i(Q)+n(r) (2) Therefore, the probability of error is given by
where [ 1 Aa A,

_____ 2 k)<---+--cosT')l
wh ere ( t - T )) P (e jr ) = I P Z (k ) < - 2j+ A o

d(t) = Adb sinc T COS (Wd + ) (3) 2

• I [ Ad A,

where Ad is the desired signal amplitude, bk is equal to + I or + P  Z 2) >A,+ A, Cos (') (8)
- I depending on the kth transmitted bit, and kd is a random 2 2 2

variable uniformly distributed on [0, 21-]. The received Since Z,(k) is a zero-mean Gaussian random variable, the
interference signal i(t) is given by probabilities in (8) are easily evaluated. The resulting expres-

sion for the probability of error, given F. is

where A, is the interference amplitude. w, is the interference I~lI) 1 - A ft
frequency. and i, is a random variable uniformly distributed P(e 1r) eric A +A, Cos ()

noise signal with two-sided PSD 7/2.
As previously noted, the rectangular shape of the desired I/ V T F T\

signal spectrum satisfies the Nyquist pulse shaping criterion. +- erfc A -A, cos (I') (9)
We therefore can minimize P(e) with white Gaussian noise 2
and no other interference by filtering the baseband transmitted
and received signals with appropriate filters [15]. In the where erfc (x) is the complementary error function defined bypresent case, the appropriate filter at both the transmitter and 1ie:,
the receiver is the ideal low-pass filter (LPF) with a cutoff erfc (x) = - d. (10)
frequency of 1/2T Hz. A separate transmit ideal LPF is not N'27r '

required since the PSD at the output of the transmit pulse- We average this expression for P(eir) over the uniformly
shaping filter is already rectangular. Wed rae th iabepreso for P(e)

At the receiver, the signal is multiplied by cos (wdt + V. distributed random variable r to determine P(e):
This multiplication coherently heterodynes the desired signal 2. f-

down to baseband The baseband signal is passed through the p(e)=- r Ad o
ideal low-pass filter LPF with bandwidth 1/2T Hz which 2 r dF. (11)
limits the thermal noise without distorting the desired signal. 1' I
Although both the transmit and receive filters assumed in the Note that when we integrate (9) to obtain 01 ). the contribu-
model described above are not realizable, they lead to a tions of the error functions are equal (and -are therefore
straightforward mathematical formulation of the problem. combined) since we are integrating over a whole cycle of r.
Physically realizable filters which achieve nearly optimal %%c define Ed as the received energy per bit of the desired
performance with nearly minimal bandwidth have been built signal and E, as the received energy in the interference per bit
114]. 116]. interval. Since Ed = A 2 T/2 and E, = A, T/2 we can rewrite

In the absence of thermal noise or interference, a single (ii) as
rectangu!ar baseband pulse of width T centered about time
t=0, when applied to the transmit filter input, produces a i .2. ( ' Ed 2E,

corresponding pulse at the receiver output which is of the form P(e) = o erfc + cos (r) dF. (12)
Ad.2 ot"' ' '74=- srnc -T(5

Z = . (5) We note that if E, = 0, then (12) becomes P(e) = erfc
The receiver samples the receive filter output at t - kT and (v2E/7), the well-known result for standad BPSK signaling
decides whether the kth bit was a "0" or a "I" based upon in white noise. Therefore, in the absence of CW interference,
the sign of this sample Since sinc (wilT) = 0 for t - kT the narrow-band BPSK system achieves the same performance
(and k * 0) we see that the Oth bit produces no ISI for any as standard BPSK.

preceding or following bits. Fig. 2 shows how P(e) varies as a function of E,/, 7, the
We now determine the signals that appear at the receive interference-to-noise ratio (INR), for several values of Ed/.

filter output when interference and noise are added in the and the signal-to-noise ratio (SNR). From this figure. we see
channel. Since the detector processing is linear, the desired that the system performance degrades monotonically as the

signal is still given by (5). The interference signal at the INR increases. When the interference power at the receiver
receive filter output is given by input exceeds the desired signal power the bit error probability

A, rapidly approaches 1/2. In the next section. we examine how
Z='- cos (F) (6) the addition of the adaptive array affects the performance of

2 this system.
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a pF OPF SPF

CL LIS

(ERROR SIGNAL)
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Ei /q (dB) Fig 3 The LMS array.

Fig. 2. Performance of narrow-band BPSK detector with CW interference(,o, = , ,). conjugate. and S denotes the reference correlation vector(W, -Wd) -given by

III. THE LMS ARRA S=E[X*Y(t)I. (16)

In this section. we calculate the performance of the narrow- We assume that the three antenna elements are linearly

band BPSK communication system when we add an LMS arranged and one half wavelength apart. We assume that the

adaptive array at the receiving end of the channel. We use desired signal arrives from an angle 0d and that a single CW
analytic signal notation for each of the signals in the array interfering signal arrives from an angle 0. Both Od and 0, are

(181. Fig. 3 shows a three-element LMS array. The signals measured from the broadside direction.
that arrive at the array elements are filtered by ideal bandpass At the output of each BPF. the thermal noise is a zero-mean
filters (BPF's) which limit the thermal noise at the array input Gaussian random process with variance

I and reject out-of-band interference. The bandwidth of these (2=7B (17)
filters must be a least I/T so that the desired signal is passed
without distortion. We shall find that the system performance where B is the BPF bandwidth in Hz. The noise signals at the
is closely related to this bandwidth and. in the next section, we BPF outputs are assumed tc be mutually statistically indepen-
calculate this performance for several array input bandwidths. dent.

The signals at the outputs of the BPF's. which we denote by It is straightforward to show that. for the signal models
91(t), 2 2(t), and 23(t), are each multiplied by a complex weight described above, the covariance matrix is given by

Rj(O)+RO()+a2  Rd(- Td) +.R,-(- T,) Rd(- 2 Td)+R-(- 2T,)

• Rd(Td)+R,'(T) Rd(0)+R,1O)+a 2  Rj(- Td)+R(- R ,) (18)Rd (2Td)+ R,(2Ti) Rd(Td)+ R'(T) Rd(O)+ R,(O)+V

I and the weighted signals are summed to produce the array where R, (r) and R (r) are the autocorrelation functions for the
output signal 9(t). This output signal is given by desired and interfering signals. respectively, and Td and T, are

the interelement propagation delays for these signals. The
1(t) = WTX (13) desired signal and interference autocorrelation functions are

where W is the weight vector, W -I [w, w2, wl T, X is the given by

input signal vector, X = (Ri (t), 22(f), 2 ,()] r, and T denotes /TT
I the transpose. R -0")=A2 sinc exp (JWdr) (19)

The array output is subtracted from a locally generated d s
reference signal F(t) to produce the error signal 0(t). The
steady-state LMS weights minimize the mean-square value of R(r) =A 1  ei. (20)I this error signal. In steady state, the LMS weight vector is We assume that the reference signal is perfectly correlated
given by [18] with the desired signal as seen at the input to element I.

W= I - IS, (14) .Therefore, from (16), the reference correlation vector is given
.by

I where # is the covariance matrix.
/Rj(0)

#=E[X*XT ]  (IS) S= R(T) (21)

I where E[*J denotes the expected value. * denotes the complex Ra(2Td) )
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where I is a constant that is dee aiiied h orn the anplitudes of 0
the desired and reference signals. I

Now that we have determined # and S, we determine the

array weights using (14) and the array output signals at the -l
array output using ( 13. The array output signal consists of the
desired signal, a thermal noise signal, and the residual -2
interference that the array was unable to null. These signals
are applied to the narrow-band BPSK receive, described in
Section II and P(e) is calculated using (12).

We assume that the interelement time delay for trie desired I
signal is much shorter than the bit inter-val (i.e., that Td 4 T). .-4
With this assumption, we neglect any distortior in the desired
signal modulation that occurs due to the sumnrriing of the time 0"-
delayed versions of the desired signal in the array processing.

I'v. RLtL'LTS -6- d

In this section. we present the results of perforroance

calculations for the narrok band BPSK comunication system -7-
with the LNIS adaptive array % e consider the effects of the
desired signal poer level the CW interfering signal power
level, the signal arrital angles. and the array bandwidth -8"

In each of the cases that Nwe examine in this paper. we
assume that the desired signal relative bandwidth B, is equal to -9-
0 1 (where B. = 27rB ' t) I is shown in [8 that the signal
power levels at the arra output are essentially independent of - .
B. for most signal scenarios for values of B, less than -30 -2O -10 0 10 20 3O
approxiiatel\ I 2. I

First. for later comparison, we shov the 5ysteni perform- E1 /'r7 (dB)
ance when the array bandwidth is large. The results for this Fig 4. Performance of narrow-band BPSK communication system with
case are identical to those presetted in [Il 1 for the LMS arra. three-elemem adaptive arra% and CW interference (B = 20/T. 1", -W
with conventional BPSK signaling and CW' interference. Fig- < 20r!T. 6, = 80. I
4 shows the performance o' the system when the interfering
signal arrives from an angle 80" from broadside. The array
bandwidth for the cases shown in this figure is 20 times the 0
data bandvidth or 20 T. When we compare Figs. 4 and 2. we I
see that the array doe, improve the system performance. -I

Fig 5 shows the performance v hen the interference arrival
angle is reduced to 10' with the arra, bandwidth still equal to
20;T. For this case the intetlerence lies in the main beam of
the quiescent array pattern (i.e.. the arra\ pattern with ito / - -
interference) 3 , . ,:

The most promiient features of the curves show n in Figs. 4 *

and 5 are humps in the P(ei versus INR curves At low INR - "
values, the thermal noise is stronger than the interference at
the array inputs. As the INR increases the interference power .. /
at the arra) output and P(e) both increase. As the INR -5 / ,

increases to approximnate)\ 10 dB. the arraN begins, to null the E Ed /7) ~6dB -
interference It is at this point that the interference and noise "J-6

powers at the array input are equal. As the INR increases
further. the null becomes deeper and the interference power at
the array output begins to diminish At very high INR values. -7"
the null is very deep and the interference power at the array
output is negligible -8 /

Since the resolution properties of the threc-element array 10 ' 12 14 16"
are limited, it is more difficult for the array to null the
interference while maintaining a good response in the desired
signal direction when 0d and 0, are close Therefore, we see

better performance in Fig 4 than in Fig 5. -101 I

Fig 6 shows the performance of the system when the array -30 -20 -10 O 10 20 30
input bandwidth is reduced to I/. All other parameters are Ei /77 (dB)
unchanged from the cases shown in Fig 5. From ,his figure.
we see that there are no humps in the P(e) versus INR curves Fig 5 Performance of narrow-band BPSK communication system with
for this narrow array bandwidth Therefore we might at first three-element adaptive array and CW interference (B - 20/T . -I ,,
be tempted to conclude that the system performance is best < 20z/T, 0, = 10).

We should noe thiat even ith n nierrence. the at Outpuf when the array bandwidth is as small as possible (i.e.. B = I /
the three-lemcnt arra) is 4 77 d8 greater than the SNR at eah element pu T). However, when we carefully compare Figs. 5 and 6. we
due iw the ,-ra) gain This 4 77 dB SNR improvement v, ould also be seen if a see that P(e) is higher for the narrow-band system than it is for
three element fixed it e . nonadaptiv et rra) were used and the destied sipnal the wideband system at the left-hand side of the curves. Thus.
were located at a pattern maximum we make the unexpected observation that. for low INR values.
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DESIRED
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INTERFERENCE

I --

-d

Ed/7l=6d \

--
//

E-9 /1, 6 d

-

100 12 1
-I0 C
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I ~ ~~~E/?/ (diB) ..... _._ -

Fig. 6. Performance of narrow-band BPSK communication system with
three-element adaptive array and CW interference (B I /T, 1'i - ,I <
ir/T. 9, - 10').

Fig. S. Adapted antenna pattern for B 20/T. E,/1 = 5 dB.

0-
system performs better than the wide-band system. However.
for INR values below 10 dB. the wide-band system performs

better.
There is a simple explanation for this behavior. As the INR

-2- increases, the array begins to null the interference when the
interference and noise powers at the array input are approxi-

-3- mately equal. Therefore. the null begins to form at a lower
2 0  INR value when B = I/T than it does when B = 20/T.B TConsider the cases shown in Fig. 7 for an INR value of 5 dB.

4 Figs. 8 and 9 show the adapted array patterns for the wide-
band and narrow-band arrays, respectively. From these
figures. we see that the wide-band array has not formed a null
in the interference direction and the desired signal is very close

o-6- to a pattern maximum. However. the narrow-band system has
-6" I formed a pattern null on the interference. Furthermore. since

B T the desired and interfering signals are spatially close, the array
-7- no longer keeps the desired signal near a pattern maximum.

Therefore, the SNR at the array output is lower for the
-8" narrow-band array than it is for the wide-band array for the

case shown. The increase in P(e) due to the narrow-band array

-" pattern null is greater than that which occurs for the wide-band
system due to the residual interference at the array output.

Fig. 10 shows the system performance for three different
-10- array bandwidths, B - liT, B = 2/T, and B - 41T. The

-30 -20 -10 0 10 20 30 curves shown in this figure indicate that there is no value of

E i /'i (dB) input bandwidth that offers a minimal P(e) for all INR values.
The curve for B - 2/ T lies significantly below that for B =

Fig. 7. Performance of three-element array for two army bandwidths lIT for INR values below approximately 12 dB. For larger
(I,~w - J,I < fiT, 0, = 10, E*/q - 12 dB). INR values, P(e) for B - 2/T is only slightly greater than

that for B = I/T. For B = 4/T, we see even better

the system performance improves when the noise power at the performance below 12 dB, but a hump is beginning to form in

array input increases the curve above 12 dB. P(e) versus INR curves were plotted
For easy comparison. curves showing the performance of for several other values of SNR and 0, and similar results were

both the wide-band (B - 20/T) and narrow-band (B ,, liT) obtained. In each case, the humps in the INR curves appear for

systems are plotted in Fig. 7 for an SNR value of 12 dB. For B values greater than approximately 41T.

INR values above approximately 10 dB, the narrow-band If the array bandwidth is greater than I/ T, then the input

I
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INTERFERENCE

-2-

-4

ILI
0

\ 'N -/" -6- Ed/7 6dB

-7-I

8\ _J 1 12 14" /

10-
.-30 -20, 0 0 10 20 30

- Ei /.77 (dB)

Fig. I. Performance of narrowband BPSK communication system with
three-element adaptive array and CW interference (B = 20/T, r/T < 1w,

Fig 9. Adapted antenna pattern for B = IT, E,/i 5 dB. - w, < 20r/T,, = 10*).

direction may be reduced by the null. We can calculate the
system performance for this case using the methods of Section

0 Ill to compute the signals at the array output and then using
(12) with E, set to zero to compute P(e). Fig. II shows the

-t performance of the three-element array with B = 20/T Hz. 0,
= 10" %and wT < I d - w,I < 207r/T. For these values of w,.
the interference is passed by the input BPF's. but rejected by i

-2- the detector LPF. In this case, the array still nulls the
interference. From Fig. 11. we see that P(e) increases with

-3" INR due to the reduction in desired signal response caused by
the null on the interference. Therefore. for maximum resist-
ance to out-of-band interference, the array input bandwidth I
should be made as small as possible.

o.--
n - "V. CONCLUSIONS

C0 In this paper, we have examined the performance of a
0 -6 bandlimited BPSK system with an adaptive array. We found
-J B that the performance with CW interference is best for array

-7-T bandwidths less than approximately 41T since the humps in

B = .g2 the P(e) versus INR curves appear for larger bandwidths.
T With CW interference, whose frequency is within the pass-- 1" band of the detector, the performance for bandwidths between

B 2/Tand 4/Tis never much worse than that for B = lI/T(and
sometimes it is better). Therefore, we conclude that. for this
type of interference, there is little reason to expend great cost

-10- ,---- or effort to reduce the bandwidth below 41T. However. if the

-30 -20 -10 0 IO 20 30 array bandwidth is greater than l/T, the system will be
susceptible to out-of-band interference. We found that out-of-

Ei / ,q d B) band interference causes a performance degradation due to the
pattern null when the interfering and desired signals are

Fig. 10. Performance of three-element array for three array bandwidths spatially close. Finally. we found that the best performance is
(Iw, - ,I < tlT, 0, - 10', E,/l - 12 0). achieved when the interfering signal arrives from an angle

outside the main beam of the interference-free antenna pattern.
BPF's will pass interfering signals that lie at frequencies to

which the detector is not sensitive. Although such an interfer-
ing signal will not adversely affect the detector, the array will REFERENCES I
still respond to the interference. If the interference is spatially Ill B Widrow. P. E. Mante). L J. Griffiths. and B. B Goode. "Adapive
close to the desired signal, the response in the desired signal antenna systems." Proc. IEEE. vol. 55, p. 2143. Dec. 1967. I
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Comparison Between Two Asymptotic Methods

ROBERTO G, ROJAS

Abstract-Two complete asymptotic expansions of an Integral with
many simple pole singularties and a first-order, Isolated, saddle point
evaluated by two different methods ore compared. It is shown that both
expansions are exactly the same (term by term) Inside and outside the
tnnstion reions.

I. INTRODUCTION

It is common to express the solution of electromagnetic diffraction
problems in terms of an integral, which, in general, cannot be

evaluated in closed form. However, it is possible to obtain its

complete asymptotic expansion for large values of a parameter. There
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are several methods to obtain the asymptotic expansion, the most by this method, the authors in 161 isolated the Fresnel integral, which
general being the method followed by Bleistein [i. For the type of is present in every term of the Pauli-Clemmow series, in the leading
integral being considered here, the most commonly used technique is 11 - /2 order term.
the method of steepest descents (2]. In order to apply this method, it It is shown in Section III that the complete uniform asymptotic
is necessary to deform the original contour of integration to the expansions obtained by the two methods described above are identical
steepest descent path (SDP), taking into account any singularities that (term by term) inside and outside the transition regions corresponding
may be crossed during the deformation. The integral along the to each pole of G(s). It was observed by Hutchins and Kouyoumjian
steepest descent path can then be expressed as follows: [7] and independently by Boersma and Rahmat-Samii [8] that the two

(- asymptotic series of l(Q) are equivalent for the special case where
I(0) = V g(z)e0 f ") dz (1) G(s) has one pole near s = 0. I

where g(z) and f(z) are analytic functions of the complex variable z Yip and Chiavetta (91 show that the function on the right hand side

along the integration path SDP. The parameter 11 is real and positive of (6) can always be expressed as the sum of two functions, namely

and the end points of SDP are at infinity. It is assumed that the T(s)B(s) = L(s)+ M(s) (7)
intearand in (1) has an isolated, first-order saddle point at zs, i.e.,
f'(z) = 0 and i" (z) * 0 at z = z. Furuiermore, even though the where L(s) is a mnction containing all the singularities of T1s)B(s)
function g(z) is analytic along the SDP, it has M simple poles and M(s) is regular near s = 0. It is then shown in 19] that L(s) =
Z I I= , near the saddle point z5. C(s) and M(s) = P(s) which is to be expected since C(s) + P(s) I

Since f(z) has an isolated first-order saddle point at z, the and 7s)B(s) represent the same function G(s). Thus, substituting
following transformation is appropriate (7) into (3), Yip and Chiavetta reduce the original integral in (3) to

the sum of two integrals (as in the first method described above)
f(z) =f(z5 ) -s2. (2) where one integral can be expressed in terms of a Fresnel integral and

Substituting (2) into (I) yields the second in inverse powers of Q. However, this is not what is done
in the Pauli-Clemmow method. As mentioned before, the function

-OS2 T7s)B(s) is expanded in a series where each term contains all the
AD) =eOf(z,)  G (s)e - s2ds (3) singularities of G(s) and consequently each term of the asymptoticseries of 1(0) will contain a Fresnel integral. In order to compare the

where Pauli-Clemmow and Van der Waerden methods, it is necessary to

dz dz -2s sdz 0 [ -2 ]l1/2  (4) study the complete asymptotic series of 1(g). In the process of
G(s)=g(z) ds --= z, = integrating l1s)B(s) and C(s) + P(s), orders of integration and

summation are freely interchanged without rigorous justification.

There are two procedures found in the literature to evaluate (3) for Thus, it is not possible to conclude a priori that the asymptotic series
large values of Q. The first one, which appears to have been of 1(0) obtained by the two methods are the same. I
originally introduced by Van der Waerden 131, is discussed in detail Volakis and Herman 1101 extended Felsen's result [4] to the case of
by Felsen and Marcuvitz (4]. In this method, G(s) is expressed as the multiple pole singularities and obtained only the leading term of 1(0).
sum of two functions such that It appears by the comments made in the Introduction of [10] that

G (s) =C(s)+Ps) (5)Volakis and Herman did not realize that the solution in [6] is
applicable for the general case where the poles of g(z) can cross the

where C(s) contains all the pole singularities of G(s) and P(s) is steepest descent path anywhere in the complex z-plane.

regular in the neighborhood of s = 0. Thus, the original integral in U. FIRST METHOD (Van der Waerden) I
(3) is reduced to the sum of two integrals; namely, the integral of
C(s) which can be expressed in terms of a Fresnel-type integral, and Since G(s) is an analytic function with M simple poles {si} m 1, it

the integral of P(s) which can be expanded (asymptotically) in a can be written as follows:
series of inverse powers of Ql. Felsen and Marcuvitz obtain the M MiPfr

complete uniform asymptotic expansion of an integral similar to (3), G(s) = rs + P(s) = +n (8)
given in [4, eq. (4.4.16)], except that they consider the case where 1=s- s-s1 (8)
G(s) has one simple pole near s = 0. It is noted that the solution where P(s) is a regular function near s = 0 and ri is the residue of
presented in (4, eq. (4.4.16)] is valid for the general case where the G(s) at the pole s,, namely
pole may cross the steepest descent path anywhere in the complex z-

plane. The generalization of Felsen's results to the present case is r,=lim G(s)(s-s,). (9)
straightforward as shown in Section fl. s--s I

The second procedure is the Pauli-Clemmow method (5] in which Because P(s) is a regular function, it can be expanded in a Taylor
the function G(s) is expressed as the product of two functions, series around s = 0 as shown in (8). It is noted that p n) (0) is the nth
namely derivative of P(s) evaluated at s = 0.

G(s) = T(s)B(s) (6) Substituting (8) into (3), one obtains

where Ts) is regular near s = 0 and B(s) contains all the (
singularities of G(s). Since T(s) is regular in the neighborhood -

of s = 0, it is expanded in a Taylor series around s = 0 and after l1tg))eel/kt +2jr,-Fre-flSiQ(T=js, ,-fl)

multiplying the Taylor series by B(s), it is formally integrated term
by term. Thus, each term of the asymptotic series contains a Fresnel
integral plus inverse powers of fl. Recently, Gennarelli and Palumbo ! 2

[61 obtained the complete asymptotic expansion of (3) following the + •Im (s,) Z 0 (10)
Pauli-Clemmow method. However, unlike previous results obtained A-0 I
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where r(n + 1/2) is the Gamma function, j = %-Tand m
e-PLANE

Q y) dr l)_ly= . ,, BANCN CUT OFfx

* It is noted tis complex, the condition Q(:Fj&)for
Im(si) z 0, implies that Re (€:js1 f/) > 0 in (10).In oderto ompre 10)to the expression obtained by the Pui o

Clemmow method, it is convenient to express Q(,,) in terms of the

transition function Fx)which isgiven by [11] TOP SHEET: < XI3w22
F(x) = 2j-xe-x e- " dt; - < arg (x) < r/2 (12)

where x can complex. Due to the presence of the square root
function ,'x in (12), and in order for F(x) to be a single-valued Fig. 1. Branch cut definition of the NI'function in (12).
function, it is necessary to introduce a branch cut in the x-plane [12],
113]. Furthermore, to assure the convergence of Fx) as IxI -- 0, Evaluating (17) at s = 0 and substituting that expression into (19)
the branch cut is chosen as depicted in Fig. 1. It follows from (11) and yields
(12) that

Q, = F(=2+ NrU(- Re (y)) (13) (,)
2y A00 efs - (I - F(jtsl)) +G(0)j

where U is the unit step function. Substituting (13) into (10), keeping
l in mind that Re (Fjs-A) > 0 in (10), yields egfl(zs) r(n+1/2)

eafD s x P. (1 -F(jfs2))+ G(0)4m  a

+_ A._r(n + 1/2)i 'm-1 T(k(o) M Cs"
an (14) -. _! 'S1 ]- (20)

where -1 I I i ' k-0

+ ri (15) It follows from (17) that
V,0)(15)(2n)I in+M-L T k)( _ _,, k

I. SECOND METHOD (Pauli-Clemmow) kO i'. Ii

Let 7(s) be a regular function given by (,G( 2 m)(0)
M¢ *T(,,(O) t| -2"-,r for M= I

T(s) = G(s) [ (s-s) = n) S n (16) (2f

ln=O "o(2n)(0) IW2 T(k+2n+l)(O)
(,F-) +Z k+2n + I)! Cjs' for M > 2.

where G(s) was defined in (4) and {s}M'w are the poles of G(s). (2n)! k10 ,' s,
Solving for G(s) in (16) yields

T(s) m C , (21)G(s)= M T (s-'- =~) ) (7I ( S -l-) (s-) (7 However, it can be shown that

where Cis =O, for 1= 0, 1, -,M- 2. (22)
C= (18) i-i

]-[I (S -So); 1 - Therefore, (20) can be written in the following manner:

k i

It is noted that for M = 1, C = 1. By means of (16), the asymptotic
series of 1(fl), given in [6], can be rewritten as follows: lJ(t)_ I e+f(s) G (0)

I-~ i"4l (~si

1(0) - ( 2 ( -F(js2))- T(0)
0.* i- C1 effzs) ,r(n +1/2) A' + ~ G " ( 21)

r $i i/)=-iI-r"7ZT (223)
+" %[., e" Of (2')).

n-2
The asymptotic expansions of 1(Q) given in (14) and (23) are exactly

UC iT(Sj) 2n+ m-3 T~)0 s-pv h ae
F Y - T .(19) As a final check, the asymptotic series in (23) can be simplified
i. k- !even further when the function G(s) does not have any poles near s
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= 0. Thus, when the poles of G(s) are far from s = 0. the magnitude

jfls, is large and the asymptotic expansion of F(jfls ) is given by I
F(jUs2) I * (IN+ 1/2) 3w 'r

F-fs)I+-T,, <fs) 2 arg (jfjs)i )q' (24)

Substituting (24) into (23) yields

1( 2 ) w 1/2) (25)n
/) (2n)!fl"

n O

which is the correct expression for the case when g(z) does not have

any poles near z.

IV. CONCLUSION

Two complete uniform asymptotic expansions (for large fl) of the
integral shown in (1), obtained by two different methods, were
compared. It was shown that both expansions are exactly the same

(term by term). It was also observed that the uniform asymptotic
solutions given in 161 (multiple pole singularities) and in 14, eq. I
(4.4.16)] (one pole singularity) are applicable for the general case
where the pole(s) ofg(z) cross the SDP path anywhere in the z-plane.

Obviously, the generalization of Felsent's result 141 to multiple pole
singularities is still valid for the general case described above. I
Furthermore, for the special case when all the poles of g(z) are far

from the saddle point, the transition function F(x) was replaced by its
own asymptotic series for large lxi. As expected, the asymptotic

series in (25) is the same as the one obtained by Felsen [41 when g(z) I
is regular near the saddle point.
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Tis work examines the transverse electric (FE) surface ray field
excited by a magnetic line sourc in the presence of a perfectly
conducting circular cylinder with a dielectric coating. The line source
and the field point are both positioned at the dielectric-air interface.

Thie surface field is first calculate from a rigorous cigenfunction
series. Next, through the Watson transform, the alternate creepingI wave representation is examined. The dielectric coating does not
have to be thin. and an example is given whereby the creeping wave
field on a thick coating must be represented as two creeping wave
modes.

This work differs from previous papers in that no one has
examined the case where both the source and field points reside on the
cylinder. Kodis (1), Kodis and Wu (2), and Rao and Hamid (3), have
examined bistatic scattering and have given a geometrical optics
interpretation. Wang 14i has recently obtained numerical results for
the case of plane wave scattering and an interpretation of scattering
resonances in term of a reflected field plus creeping waves.

Fig. I shows the pertinent geometry. The conducting cylinder hasa
radius p - a and the dielectric coating has a radius p - b. The
magnetic line source is f directed, has a strength of Maf V, and is
positioned at (p', 0') - (b. 0). The field point is at(p.,*) = (b,
#). Since the coating is nonmagnetic, p, - pac and the dielectric
constant is eI.

A. Eigenfuncf ion Solution
The magnetic field has only a f component and can be computed

from the eigenfunction series of the inhomogeneous; Helmhioltz
equatio. The solution must also satisfy the boundary conditions E#

-0 at p - a, E# and H, continuous at p - b, and the radiation

with ~ ~ ~ ~ ~ ~ ~ t adhc ilc cCau e e ntio n's h firstian se n ti in.Tel wavenbr aI?

Exiad tos of Crepng Wa e s o ah Cicula r s Cylinder i0 uictos aklfcinof larges kndo orderm , n , r

wetcem ith a Thifc D i e e cticd oat BowlO~ aucto of2(x th-i n eodknd h aeu r

kio for C .o n o-2 .- IfrM*0
mcri tT eiva DesANDe N7 N WANG. MMMs Muly 3e main. dificlt ineautngti eie sta iovre

Can~er slowlyndb so its remaindermrc Cust[2e s umme i~tnh coe formb- .) Tisi

ft. Paay d wmd a IIs wit Clrbo thaerty o n, NY 13676. ckni

sel-e Lo wn~377. ainh(X 4 uMI)-1 4M/kb I2 m
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Fig. I. Coordinates for the dielectric coated cylinder. a •s d•
Fig. 2. Ray encirclements associated with the summation index n.

and
TABLE I

"Ya.b = tanh (Cf..b) - aab. I, AND LpUFOR kob = e, = 4f,

If m 3okla, and m~i-kjb, it can be shown thaty, -y . In (b/a)

and concquertly d/Xo Vl 1 .<1 Lj(deg.)

0.10 24.10 * 10.117 0.309 83.3
tanh [M(-Y5  - (b/a) _-(b/a)- 0.20 32.09 + 0. 0.0700 90.0

-(b/a),,+(ba), 0.30 34.52 + 10. 0.0218 90.0
0.40 34.93 + 10. 0.0119 90.0

If (b/a)" *I1, then 0.50 34.77 + 10. 0.00888 90.0 1
C. - oie  !lmk.I1- '". d/ko V2 1121 L2 (deg.)

0.10 23.43 + 15.270 0.0601 8.3
The above approximations for H H, and C. then give 0.20 20.81 + 14.182 0.139 -51.9

0.30 20.87 + 11.820 0.226 28.1
0.40 22.87 + 10.271 0.217 78.2

H")(kob) -e kob 0.50 26.5 + 10.002 0.0951 90.0

H(1)'(kob) +iC, H J(kob) I + t m

where e= e/eo. By using the formula [5] 0- igenfunction
residue series - - -

- d=0-05 )'4
ScosmT -In (2 sin (0/2)) -10 one mode

one can compute the infinite sum in (i). For the cases presented, the 20

first n = 6 k0b terms were summed nunerically. I

B. Residue Series -30

Through Watson transformation [6, the following equivalent 0

representation of the Green's function is established -401

G(o)= G.(0+2nr) (2)

,. _ .- 50-

0 30 60 90 120 150 180 3
where 0 1

Fig. 3. Eigenfunction and one mode creeping wave solution, d/Ao = 0.05.

G(O)= LPe"P'10 (3) (prescribed in Im ()) can be quite small. For such a case, it is
PI important to add up all the ray encirclements by using the geometric

- p H ,,(kob) (4) sees

kb [H"'(kob)+iC,')(kob)jlp , el. +e-i'#I "

H.-

and a', are the complex roots (7] of The prime denotes exclusion of n = 0 from the summation.

H) (k 0 b) + iC,H )(kob) =0 (5) C. Numerical Results and Discussion

in the upper P plane. G(0) is 2w periodic in 0 whereas G.(#) satisfies All cases shown use the parameters kob = 20, (1 = t4. Table I

the radiation condition in the infinite angular domain - cc < 0 < co. A contains some repreentative values of p and L, for the creeping

given mode p of the residue series in (3) is interpreted as a creeping waves. The roots v', have already been discussed in 7I .

wave propagating along a curved surface as shown in Fig. 2. Th Figs. 3-6 compare the computed Green's function, using (1) and

total field in (2) is obtained by summing up, over n, the multiply (2). It was found that when d/e > 0.25, the creeping wave solution

encircling rays. For a thick dielectric coating, the attenuation rate required both the p = I and p = 2 modes, whereas for thinner
coatings the p = I mode alone was sufficient. A typical case, d/Xo

The authors express their thanks to Professor Jack Richmond of The Ohio - 0.30 is shown in Fig. 7 to illustrate the behavior of the individual

State University for his subroutine used in calculating Besse flancon. modes which form a two-mode solution.
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-10- d:0.30p i mode

o0 -- p-2 mode

0 '_

-30 0

CN eigenfunction 00
40 residue series - - - C-0 d-0.10 Xo

one mode

-500
0 30 60 90' '12 150 160 0 3 0 9 2 5 8

Fig. 4. Eigenfunction and one mode creeping wave solution, d/X.0 =0.310. Fig. 7. Individual modes for d)X0 = 0.30.
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Wiener-Hopf Analysis of the EM Diffraction by an
*| Impedance Discontinuity in a Planar Surface and

by an Impedance Half-Plane
ROBERTO G. ROJAS

Abstract-The electromagnetic diffraction of a plane wave by a planar equations. Copson [251 was one of the first to apply this
surface with a discontinuity in impedance and by an impedance half-plane method to solve diffraction problems by formulating the
S is studied. The plane wave of arbitrary polarization is obliquely incident diffraction of sound waves by a perfectly reflecting half-plane
to the axis ot the two-dimensional structures. The solutions obtained here
are based on the Wiener-Hopf technique and they are cast in a matrix in terms of an integral equation. A more general method based

notation which is useful for diffraction problems. The exact formal on the Wiener-Hopf technique also exists. This method.
solultens are expressed in terms of integrals which can be asymptotically known as the Wiener-Hopf Hilbert technique, was introduced
evaluated. Uniform asymptotic expressions are obtained where the by Hurd [261. However. as with the Wiener-Hopf technique,
presence of the geometrical optics (GO) poles as well as the surface wave in general it cannot be used to treat wedge-shaped objects.
poles near the saddle point are fully taken into account. Several numerical
examples are presented and it is shown that the solutions are continuous Pathak and Rojas [ 181 have obtained UTD solutions based on

across the shadow boundaries of the GO and surface wave fields. the Wiener-Hopf technique for the scattering of plane,
cylindrical, and surface wave fields normally incident to the z-
axis (no z-dependence) of the two-part impedance surface

INTROD'CTV"
'  depicted in Fig. 1, except that in [18], Z, = 0OorZ, = .The

T IS WELL KNOWN that the scattering properties of a scattering of a surface wave field by the two-part surface
body are functions of both its geometrical and material shown in Fig. I has also been solved by Kay [51; however, as

properties. In the last few years, there has been a renewed in [181, all the fields in [5] have no z-dependence. Further-
interest in understanding the effect of the material properties more, it is assumed in [5] that Z, and Z2 are purely imaginary,
of a body on its scattering behavior. In particular, the edge i.e., lossless case. Senior has solved a number of half-plane
diffraction by dihedral structures, whose surfaces can be diffraction problems using the Wiener-Hopf method [21-[4].
modeled by the Leontovich (impedance) boundary condition, In a recent paper, Volakis [211 modified Senior's Wiener-
has been studied by several authors for both acoustic and Hopf solution [31 for the EM diffraction by a half-plane with
electromagnetic waves [11-[221. equal impedances on both sides. The solution in [31 is not

For this class of problems. where the surfaces of the wedge- bounded at the incident and reflection shadow boundaries;
shaped structures satisfy the Leontovich boundary condition, whereas, the modified solution in [211 is uniform (bounded)
there are two basic methods of analysis. The first method, across these boundaries. However, the solution in [21] does
which is the most general of the two, is that of Maliuzhinets not take into account the presence of the surface wave fields
[11. Bucci and Francheschetti [81 extended Maliuzhinets' excited at the edge of the half-plane.
solution to formally solve the scattering problem by a half- In this paper, the Wiener-Hopf technique is used to solve
plane with different face impedances. However, they did not two canonical problems. The first problem considered is the
asymptotically evaluate their formal solution. Vacarro [I1], electromagnetic diffraction by a planar surface with an
1121 has generalized the Maliuzhinets method, which he refers impedance discontinuity (two-part surface) as shown in Fig. i.
to as the generalized reflection method, to treat the case of Note that each half-plane (x - 0, y = 0) is homogeneous and
oblique incidence on a wedge. The uniform asymptotic isotropic, i.e., Z, and Z2 are scalar constants. The incident
evaluation of II1, [121 was obtained by the present author field is assumed to be a plane wave of arbitrary polarization
1171 including the case of surface wave incidence, obliquely incident to the z-axis as depicted in Fig. 1.

The second method that is available to solve problems The starting point of the analysis is to define, as was done in
involving the diffraction from the junction of semi-infinite [II], [171, a two element column vectorf z whose elements are
planes is the Wiener-Hopf technique [23], [24] which was the z-components of the electric and magnetic fields. It is then
introduced around 1931 to solve certain types of integral sufficient to obtain the solution for this column vector since it

M received September 11, 1986: revised May 13. 1987. This plays the role of a vector potential. In other words, all theManuscript otherifieldecomponentscan8be determinedain1terms8offThiI
w ork was supported in part by the Joint Services Electronics Program under other field components can be determined in terms off.. in

Contract N00014-78-C0049 and by The Ohio State University Research contrast to the case of normal incidence to the z-axis where the
Foundation. elements of f. are decoupled [181, the Leontovich boundary

The author is with the ElectroScience Laboratory, Department of Electrical
Engineering. The Ohio State University. Columbus, OH 43212. condition couples the elements of fz for the case of oblique

IEEE L.ig Number 8717999. incidence. However, as shown in 1161, the noriiial components
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sides. The solution for the half-plane problem is obtained by
appropriately combining two special cases of the two-part
problem; namely, the solutions corresponding to the cases
where Z 2 = 0 and Z. = oo, respectively. Finally, several

numerical examples are presented for both problems consid-S- ( ,,i) ered here with a brief discussion of their applications to
practical problems. It is noted that all the fields in the
following discussion have the e '"' time dependence.

STArEMENT OF IHE PROBLEM

As stated in the introduction, the first canonical problem to

be considered is the analysis of the diffraction by a two-part
impedance plane depicted in Fig. 1, where Z, and Z, are scalar
constants. The total field (E, H). which will be determined
everywhere in the half-space .v > 0, satisfies the impedance
(Leontovich) boundary condition, namely

E) P=Zjfx ; X -- O,y=O (1)2

E H where E and fl are the electric and magnetic fields, respec-

tively. Let us consider a plane wave of arbitrary polarization
which is obliquely incident to the z-axis of the infinite plane as
shown in Fig. 1. Since the infinite plane is a two-dimensional

, .- z, geometry, all the fields will have the same z-dependence as the
incident field, namely

Fig I Planar ,urtac. uith an impedance discontinuity.
E=E(x, y)e k'Zz; F1=/F (x, y) e ik '  (2)

of the fields, i.e., E, and I,, are decoupled. Therefore. thetwo lemnt ectr f whse lemntsareE~ nd is where k ' =- k cos 0'. Therefore, all the field componentstwo element vector f_, whose elements are E,. and r70ny, is

also introduced. The Wiener-Hopf equation is then obtained can be expressed in terms of E ano H1 (the z-components of
the electric and magnetic fields, respectively), that is

in terms of the column vector I,. by following Jones' method
123j. (271. As expected, the Wiener-Hopf equation is simpler E= V x I EV × )+ikzoH.),K
when the normal fields E, and H, are used instead of E and (3)

The solution of the Wiener-Hopf equation requires the where
factorization and decomposition of two-by-two diagonal matri-
ces. The factorization procedure employed here is based on a a +
Weinstein's work 1281. There is also a formal procedure to V=ZV+Zk:; ax ay
decompose a function: however, in this paper it is done by and

inspection. After applying the radiation and edge conditions,
the Wiener-Hopf equation is finally solved yielding an K=K, +iK 2 =k sin 0' =(k, +ik,) sin 0'; k1 , k,>0
expression for the column vectorf, in the Fourier-transformed
domain. This expression contains two nonzero arbitrary 0<0'<w. (4b)

constants which must be determined in order to have a unique The constant ip, is the free space intrinsic impedance and k is
solution. Before these unknown constants are determined, thesoltio fo f-is btanedintheFouiertrastomeddomin the free space wavenumber which is temporarily allowed tosolution fo r fz is obtained in the Fouricr-trans form ed dom ain h v m l m g n r a t f r c n e i n e o n l s shave a small imaginary part for convenience of analysis.
in terms olf, by means of a transfornmation matrix. It turns out Next, let us define the column vectorsfz and f, as follows:
that the expression for f. contains poles which give rise to

fields that have no physical interpretation. Thus, the unknown l [H
constants are properly adjusted to remove the unwanted poles [z "E. 1 [oH,ax Za A
yielding a unique solution for fix, y, z) in the form of an = a j .[..
integral. The asymptotic evaluation of the integral is then ik" ik '
performed, where the presence of the geometrical optics (GO) a v --

poles, as well as the surface wave poles near the saddle point. (5)

is fully taken into account. This results in a uniform expression where both J, and fz satisfy Helmholtz's differential equation:
across the shadow boundaries for the GO and surface wave

fields. (V.+K 2 )j - [0/] /It, Z, V > 0. (6)
The second problem considered in this paper is the EM LJ -

diffraction by a half-plano with equal impedances on both Since all the field components of EV and Rl can be determined
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Ifrom f the incident plane wave field can be completely where

defined in terms offP, namely R (4') 0 1

IX 2(4 )= 1(O'
f=Poexp(ik;x-ikyy+ikzz); P0z- Eo; (7) 0 Rh( ') '

sin q ' -sin17HO IR (0')=si 0' -sn ; 0<0 '<w. (14b)
whe,-e E, and Hoz are arbitrary constants (the magnitudes of sin 0' +sin VI E, and H i respectively, at x = y = z = 0) and.z' By means of (9), (11), and (12), it can be shown that fy

k= - K cos 0', k' = K sin 0'; 0< 0' < ir. (8) satisfies (6) and the following boundary conditions:

The column vector fy was introduced because it satisfies the a
following boundary condition: (7 +iK sin #) =O; y=0 x<0 (15a)

(7i+iK sin ;i j=O; X E 0, y=0 (9) (a -
+ia sin 2 =;O ) I -+iKsin I (fyS+fy)= ; y=0 x>0. (15b)

(~ Yywhere
wher 0Per 0 i In rder t osim plify the n tati nthe fact r e') is dr pped at

[1 0 sin V this stage of the analysis; however, it will be reintroduced[ sins; 2 once the Wiener-Hopf equation is solved. As in [18], it is0 sin , convenient at this point to introduce the half-range functionsI y± Let

170 0 fy=fy++f - (16a)

2 ZI (10) where

7 -si'n0' = x . to _ x>0 (16b)L'J- fy < yx<0"

Since it is assumed that Real (ZI) > 0, the real part of v is If s is a complex variable, i.e., s = a + iT, where a and r are2

restricted to the interval 0 < Real(,) < v/2. It is important to real variables, one can define one-sided Fourier transforms of
note that the fields Ey and Hy are decoupled in (9). fy±, (provided they satisfy certain conditions [231, [24]) whichwill be denoted by fy,±(s, y). The functions F,+(s, y) andSOLUTION F'y_(s, y), which are carefully defined in Appendix I, are

Because of the simplicity of (9), the Wiener-Hopf equation regular in the upper half-s-plane Im(s) > r_ and lower half-s-
will be obtained in terms of fy instead of f. For analysis plane Im(s) < r, respectively. The constants r- and r+ (r-
purposes, it is convenient to express the solution as < r+) are also defined in Appendix I. In terms of the one-

sided Fourier transforms FPy,(s, y) and Fy(s, y), the two-
-, =y.,+ y, y 0 (11) sided Fourier transform offy is given by

where fyu, which will be referred to as the unperturbed Py (s,y)=Fy+(s,y)+,y_-(s,y); y > 0, T_<r<T,
solution, is the field that would exist if the whole plane in Fig.
I were a surface with impedance Z2. Thus, fy will represent (17)
the effect of the impedance discontinuity at x = y = 0. The

unpetured feld satifie (6)andwhere F,, is regular in the strip defined by r- < 7- < r,.
unperturbed field satisfies (6) and Thus, taking the two-sided Fourier transform of (6), keeping( 7 +i sxin mind that the unperturbed field fu(x, y) satisfies (6), yields

Te ay a;O x<" =.(2 (-+02) y=6 )' 0, r< T<T-r (18)The incident field is given by T 2 ) y

where (18) holds true within the strip defined by r_ < r < r
Foy 0 ,exp (i(kx - ky+ kz));any andl[-kk' k'k]fz 13 K -2'2

,K k ; (13) k=KIm(1)>0. (19)

YK2 k;k; kkc; ]
It is noted that in addition to the boundary conditions, Ps must

It follows from the definition offy that also satisfy the radiation condition as y -. o for the exp
-'+ P 2(4 )P0 y exp (i(kx+ky+kz)); Y '> 0 (-iwt) time dependence. Furthermore, the branch cuts of 3

are chosen such that lm(O) > 0 in the proper (top) sheet.3 (14a) Therefore, a solution of (18) which satisfies the radiation
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condition is gh(s) and ge(s). The lengthy details of this procedure will not
be presented here, because they can be found elsewhere in the

F, (s, y)= A (s) ellI'; i_ < r< , y > 0 (20a) literature [161, [231, 1241, 1281. Instead. the main results of the

where factorization of 6(s), which are based on Weinstein's
work 1281, are summarized in Appendix 11. Thus, using the

A(s) = F., (s, 0) + F. (s, 0); T <7< r., y = 0. results of Appendix II, the factorization of 6(s) is defined by

(20b) 6(s) = 6, (s)c - (s). (24)

The column vector A(s). also regular in the strip r < r < Substituting (24) into (23a) yields

r,, is an unknown function of s that will be determined via the
Wiener-Hopf procedure. Following Jones* method [271, the C '(S)C2, (S)Fr (. 0)+C.'(S)CI (S)F 5 (S,0)

first step is to take the Fourier transform of the boundary -r <r<r, (25a
conditions given in (15), which yields (S) A

awhere(I + XK sin v-, (" s, _V) = 0; y = 0,±ay 9 s ( wr(s)=6 1 (s)C 2 (s)/(s+ky). (25b)

nd7<T, ==Im(K)=K2 (21a) The next step in this procedure is to decompose X(s) into

and X(s) = R , (s) + X (s) (26)

( - +iKsin 1,) -(P - (s'y))=0; where + (s) is regular in the upper half-space defined by

( F Im(s) > T and X= (s) is regular in the lower half-space Im(s)

< r+. As was the case for C(s), the matrix R(s) is also
y=0, r> r . (21b) diagonal. Thus, its decomposition reduces to the decomposi-

The function P1U can easily be obtained by taking the one- tion of its elements. For the problem being considered here,

sided Fourier transform of (14a), i.e., the decomposition of k(s) can be found by inspection.
Therefore, only the final results of the decomposition of k(s)

(i are given in Appendix 11. By means of (26), (25a) reduces to
ru sy ( exp ( - ik s V) +A 2(10")( , 12 r -'(s)02. (s)PF (s, 0) -k, (s)D= - (s)

exp (ik,y))Fo /(s+k ); >7 =K 2 cos '. (22)

Incorporating (20b) and (22) into (21) and after some (

simplification yields the Wiener-Hopf equation which holds After a careful examination of (27), one concludes that all the
in the strip r < r < r, namely functions on the left side of(27) are regular in the upper half-s-

.(s, 0)±+ G, (s)F, (s, 0) 01 (s) 2 (s)D/(s + k); plane defined by T > r. On the other hand, the functions on
. s the right side of (27) are regular in the lower half-s-plane

r <7< 7, (23a) defined by T < r+. Since both half-s-planes have a common
%,here overlapping region described by r < T < r,, it follows by

analytic continuation 1231, [24] that both sides are equal to an

[gs 01 K entire function M(s) (regular on the entire s-plane). Due to the
G 1 2 (s) •~() = +K sin edge conditions that the fields must satisfy near the impedance

g 5 discontinuity, the asymptotic behavior of both sides of (27) is

(23b) algebraic rather than exponential [241. It then follows from the
extended form of Liouville's theorem [24] that A(s) is a

and polynomial in s. Furthermore, for this particular problem, the
edge conditions require that the tangential components of E.

D -- i [,in V,(1+A,!,W))- k.'(1-A2(4'))/KIF,/2r. and H, be bounded across the impedance discontinuity I111.

[16]. It can be shown [161, that due to both the constraints on
(23c) Ez and H. across the impedance discontinuity, and the

asymptotic behavior ofC , (s), 2. (s) and k,(s) as Isl - oo

In (23a). the functions F and P, are both unknown while for T Z r, M(s) is at most a constant, namely

e(i.s), eas) and I) are known functions. The first step to solve

the Wiener Hopf equation is the factorization of the diagonal M(s) - M]= mI for all s (28)
matrix 6 1,2(s) into two matrices which are regular in the upper[ rnJ '
and lower half-spaces defined by Im(s) > - K 2 and Im(s) <
K,, rc,pectively. Since M(s) is a diagonal matrix, its factoriza- where in, and M 2 are arbitrary unknown constants at this stage

tion reduces to the factorization of its individual elements, i.e., of the analysis. Finally, solving for F", (s, 0) and F. (s, 0) inV I
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(27) and substituting the resulting expressions into (20b), ImSI yields K - REAL

SA,(s)= 6,,, (s) :,- (s) A" na o K- , ,iB

K
ANT EGRAT ION

(s+ k'),f2-r 21 K

[6t~$)~(k'ik'Fv - ~ KOS*Re (s)
(29a) -K / ,Kcoso'

where rm0• .o

Z(m) = 2 (sin ; 2 - sin 7
1). (29b) PROPER SHEET: Im 3> 0

As expected, when Z, = Z2, Ay(s) is equal to zero. Note that Fig. 2. Path of integration in (32).

the expression for A, still contains the unknown constant A.
In order to evaluate A and thus obtain a unique solution, it is
necessary to first find the expression for FI(s, y). Taking the

two-sided Fourier transform of (5) and solving for F', one
obtains-I , n 3r ME

Fs(s,y)==C-I(s)Fs(s, y)=C-(s)Ay(s)eitY; y >, 0 r WI.

]( 0a Im( _ ImIZ)O W-PLANE

(3a0ob djse nsc awyta heetoplsae II F , . w

whereB W Wr W# ,3 [, ks . ,-- .
I dC(S) =- (30b) Win 10 rK-fI O

\

The expression in (30a), due to the matrix 0-I(s), has two Fiph(an)d per io d p

poles at s ik whosintroduce reue nam fields which do p, "w, +

not have a physical interpretation [16]. Therefore, the constantiing T e snin
has to be adjusted in such a way that these two poles are I s

suppressed. It follows from (30) that

S-e(xp ik()=0; - =[i, 1 (31)
where '±is a row vector. Before (3 1) is solved, it is 7 TOP RIEMANN SHEET IN S-DOMAIN WHERE I'm,8*

hconvenient to first obtain the expression forg(x, y, 0. This is Fig. 3. Integration paths . and Cs p in the periodic w-plane for k = k

accomplished by taking the inverse Fourier transform of s(s, (real). The singularities of the function A(w) are also depicted.

y) and reintroducing the factor eik , namely where p = to and the new integration path l. in the w-
ex ikz domain is shown in Fig. 3. The expression for Az is given by
expZ~ik Y, z)) Fs(s, y)

s(Y' - c;2 s - A( w)= (w)(w) sin w cosw. exp(isx) ds; y >1 0 (32)[CsW c;

where the path of integration is shown in Fig. 2 and k2 hassi(3a
been set equal to zero. The next step in the analysis is to where

Iintroduce a hneof variables via the transformation CsW snWCs0

s= -Kcos w; #=Ksin w (33) (w) = si '1sin w cos 0' Cosw IN

where w is a complex variable and K = Ki, k = k,, i.e., k2  [ (W) g_(W) 0 ]
[gW) (35b)0. Replacing x and y by p cos 45 and p sin -0, respectively, 0w)= gh (w ) g (w) (

(32) can be written in the w-domain as follows:
I and

f ,(p, .0, Z) = e x p (ikz cos 0') AZMw =- -(%?'W) w) 3c

2 ri - rw =- -o0J-(ORW) 3c

exp (iKp cos (w-.)) dw; p >0 0, The expressions for g ,(w) and g2 -(w) are given in Appendix

0 ~ ~ II and they will not be repeated here. The constant matrix A is
evaluated by solving (31) in the w-domain. In other words, A

(34) is adjusted in such a way that the nonphysical poles introduced
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by C'are suppressed. The details of the solution of (31) and where
the expressions for /R(w0) and t(wo) are given in Appendix
III. U = U ( 0 , - 0); 0 P= i + arccos ( COS P

ASYMPTOTIC ANALYSIS

As shown in the previous section, the formal solution to the U 2 = U( - s2); 0s2=. + Vr2 - arccos( sI

canonical problem of Fig. I has been obtained in terms of an COS vh12
integral. In general, this type of integral cannot be evaluated (40b)
in closed form. Fortunately, in diffraction problems one is
interested in the solutions for large Kp which can be obtained and
by applying asymptotic integration techniques. Here, the
steepest descents method will be used to obtain the leading ws/, v = , if Im(Z 1)<0, 1= 1, 2 (40c)
term offI for large Kp.

The exponential function in (34), i.e., exp (iKp cos (w - or
o)), possesses an isolated, simple saddle point at w = . w5 = w e, vt= p , if Im(Z)>0, 1= 1, 2. (40d)
Furthermore, the function A, is analytic everywhere, except
that it has the following simple real poles in the vicinity of the The constants VPr and vn, in (40b) are the real and imaginary
saddle point w = 0: parts of vj, respectively. Ftirthermore, f,,(wl), which is the

s2
residue of A,(w) at w,,, can be written as follows:w=z-0', w=7r+0', w= -?r+o '; 0<0'<7r. (36) S2

In addition to these real poles, A](w) also has four complex e(W;)- I(We-Ph.,(w;A) (+ -] +
poles (see Fig. 3) whose residues can be interpreted as surface Cos W, + cos 0
waves departing from the impedance jump:

e ,.h sin 1=1,2 (41)
s l s2 ( where P,(weh) is the residue of (w) sin w at weh, namely

where 0 < Real(. 2) < ir2. Si

When the contour . is deforme6 into the steepest desnt 0 01
path CSDP, the poles of A, may be crossed. If this is the case, A g" (w,)
then the poles are captured and their residue contributions (w 0 tan (wsl) h-must be included. Note that w e,  and we ,h which are the poles g9 (W 1)

of (w), can be captured only when Im(v, 2) < 0. It follows
from (10) that Im(I'. 2) 0and Im(v', 2) 0when Im(Z, 2 ) Z 0 0
0. Therefore, for given values of Z1, 2, only two of these four h h

poles can be captured. Furthermore, since 0 < 4 < ir and 0 1'2(w 5 2)- 0 tan (wh ) 1 +, (w 2) (42a)

< 0' < r, the poles w = ir + 0' will not be captured for [' (4 2 Jwt

the two-part impedance problem. Thus, deforming the contour
r. into CSDP in (34) and adding the unperturbed fieldf" yields and

the following expression for the total field 1: [tan (wl ) g- (W 0
d ~ (3w)S)I=

f = z + f+ + l +f (38) ( 0 0

where f'. is the incident field defined in (7), -9d f' is the
reflected' field given by __gel_+_(weWe tan sw2) _ (W 2

+ X2(,?' ) u(4, - wr + 4,' )} (ir + -, ' ),, 0J
exp ((-iKp cos (+4')) exp(-ikz cos') (39)

The last term in (38), i.e., f ,, which in this paper is referred to
where U is the unit step function. The fieldsf- andfw are the as the diffracted field, is given by
surface wave fields which exist in the half-planes x > 0, y
0 and x < 0, y = 0, respectively. They can easily be obtained f exp (-ikz cos 0') A/(w)
by computing the residues of the integrand in (34) at the poles (p, 4, z) 2i __Cs________

defined in (37). That is. exp (iKp cos (w- 0)) dw;
Ifz I f,. (w,I) exp (iKp cos (w, I--))

z s2 s2 p>O, 0 < 0 4< 7r. (43)

Sexp(-ikzcos0') U; (40a) The asymptotic evaluation of (43) was carried out following a
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procedure similar to that proposed by Gennarelli [29]. Without HALF-PLANE SOLUTION
going over the details, taking into account the presence of the The solution for a half-plane having the same impedance Z,
poles of A,(w) (real and complex) near the saddle point 4, and on both sides can easily be obtained from the solution of the
keeping only the leading term of order (Kp)- 1/, the asymp- two-part problem discussed in the previous sections. This can
totic evaluation of (43) is given by be accomplished by first expressing the incident plane wave
f(p, , Z) - -eiv

4 exp (iKp - ikz cos 0 ) field as the superposition of four incident plane wave fields as
depicted in Fig. 4(a). That is, the incident field is decomposed

[ [1-I (iKpsl)] into symmetrical and asymmetrical components. Equivalent

r1 - I configurations to those shown in Fig. 4(a) are easily obtained() +4,) (44a) by taking advantage of the symmetric/asymmetric properties
2 sin ( 2, 2 of the incident field. The equivalent configurations, which are

where shown in Fig. 4(b), are simply special cases (Z 2 - 0, Z 2 -

/- oo) of the two two-part problem that has already been solved.
s,=,2ei/4 sin - Thus, the next step in the analysis of the half-plane problem is

2 to evaluate A, and A 2 when Z 2 -+ 0 and Z 2 - o, respectively.

= x-4,', w2 = wh w3 = w h w4 = w e w5 = In order to avoid any confusion, the superscripts "c" and
sl' W3 s2' st' =s2" "m" will be added to the solutions of the two-part problem

(44b) when Z 2 - 0 and Z 2 - oo, respectively.

The residues f, contributed by the poles listed in (44b) are Case 1: Z 2 -* 0 - 0; p -/ 2 - io
given by 1 013 rl= -(T--4,')(t(4,)-2(,))--(T+4,')Oz (45a) 2 (4,')= [ 1] (47a)h= ewj) f4= =. W
f2 = f(W' f.(w 2 ), I4 = (w ), and f5=fl(w 2).[s2SA (o) = (4,0) [c o s ,+cs ,

(45b) Z[o Cs0

As mentioned before, only two of the four surface wave poles " (0')2c(P)4(i+0')Ao0 (47b)
w2 through w6 can be captured for given values of ZI and Z2 .
The function if(x) is the well-known transition function 1301, g+ (4,) sin 4, 0
that is jC(4,) = 1 0.+(s,)]

5:(x)=2iFx&ei e -  dt; - <arg (x)< (45c) 0 + (01,Ax 2 2(x)< g

where x can be complex due to the surface wave poles. In r 1 0
order for I(x) to converge, the argument ofx is restricted to 2 ' () = 2 sin (47c)
the domain - 3w/2 < Arg(x) < r/2 in the complex x-plane. i
In other words, the branch cut in the complex x-plane runs Since Z2 - 0, the residues f,,(wsh) are equal to zero, i.e.,
from the origin to infinity along the positive imaginary axis. It rP,(w.h) = [0]. The function fi which is the limit of A as Z2
is noted that when the magnitude of x is large, the transition - 0, is defined in Appendix M.
function f(x) approaches one. Hence, when the poles of
Aj(w) are far from the saddle point, the only nonzero term Case 2:Z,- r 2h1r/2 - ioo, 2 - 0
within the brackets in (44a) is AA(4,). X2(0')= -x[(4,) (48a)

As mentioned before, when the original path of integration 2
is deformed into CsDP, the poles of A(w) at w = w + 4, ', w A ,,) = [
= - i + 4,' and w = 3- - 4,' will not be captured. Z C(4,)=-()cos 4,+cos 4,' ]
However, when the half-plane problem is considered and the
range of 4,' and 4 is extended to 2T, these poles can be • (48b)
captured. Therefore, it is convenient at this point to evaluate

these residues, namely - sin ge+ (4,) 0

- o + -(2 + ') A/(20 sin 4,g- 0(4,)

l " ( r+4,')F0 ; residue at w +4,' ,2( )=2 _sin ,  0 (48c)

FOz - I 1- +4,')12(4,,)II (20 4,') 1 1
(46) As in Case 1, when Z 2 - o, fej = [01 and ,, which is

•( + C, ; residue at w= - + 4,'
given in Appendix III, is the limit of a as Z 2 - oo.

4!_ - 0 -, -0')X 1(21r - 0')}) 2(- ' )  It is noted that the two-part problem with Z2 -. 0(oo)

C(- + 0'),F0 ; residue at w = 3 - corresponds to the configuration of Fig. 4(a) where E, and H,Iw -have asymmetric (symmetric) and symmetric (asymmetric)
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OBSERVATION POINT and
1t

(
E1 . HzI

( Nil I i, x _ (4), , for 0 < ,' < 3
X ' z= (27r- ) for w<o' <21r

z' "x , "z, wl =7-'; w2 =sr+0'.' (52c)
'I E; -H,.) I ' 'N)

(a) I-E The function a, introduced in (52a) is defined as follows:
(a) (w, )

(i. NIL 14 Hi) *(E, H') al= fieiv 4 sin ( ----- ) •
S1 'n-" Ez 2z

z,, . I=3, 4, = for 0< 0 2 (52d)
Z' 1 2r-0 for r<0 <2w

(PMC) (PEC)

(b) and

Fig. 4. Relation between the two-pan problem and the impedance half-plane
problem. f r; I= 3, 4, for 0 < 0 <-Ifor < 2. (52e)

excitations, respectively. This can be checked by examining Furthermore, F, through fP are given by
(47) and (48), and by noting that g(w) satisfies the identity

g,(21 - w) = g(w). Thus, the range of the angles 0' and I I
4, for the two-part solutions can be extended to 2r. The 1P=f (Wl)+ fm (w,); (52f)
solution of the half-plane problem is then obtained by
superposing (see Fig. 4(b)) the two-part solutions with Z2 - 0 where w3 = ws, W4 = Wh, W5 = 2w - W~,andw 6 =2 --

and Z 2 - oo, respectively, and keeping in mind that the poles we. The residues rch(w) and fl(wt), are given in (41), except
of A c,"(w) at w = w + 0', w = -r + 0', w = 3v - 0' that the functions (A, sin 4'(4"), 51(wi), 2 (v)) are replaced
can be captured, namely b (A', , c(',), Pc(wt), Zc(V)) for Case 1, and by (Am,
fIp =i +f +f d 0 < , 2r, 0 <40' < 2w 7l(O'), 7'-(w,), 2"()) for Case 2. All these new functions

J p --4 Z, pP were already defined, except for Pf(w) and Pm(wl), which are

(49) the residues of w(w) and Pm(w), respectively, at w wi,

where namely

JZ,=Foz exp (-iKp cos (4-4")- ikz cos 0') h [o \ sinl(w 1 /2) 1
[U(,0-,'+')-U(0-0'-7')1 (50) Cos (W 0 h_ h,

o s Ig (w ,)

in the incident field and
Jr .'0'-.0)[,(0')U( '- '-,0) 0 0 1

, I (w, I tan (wh,) (53a)
+ A,(2w-4,) U(4'_ 3x + 4,)I(w+ 4,),o 01 I g_(w 1 )I

* exp (-iKp cos (46+0')-ikz cos 0') (51) L i

is the reflected field. The diffracted field is given by tan (we)
e _v/ S -- S -. 0

2 -exp (iKp - ikz cos 0') 0

r 2P 2wl~p1)p

A { I(4)+A-(4)+ l i"(we)= [cos (we)ge (W 1 ) J (53b)
I- sin (- - 0

4 jIl (iKpa2)] 5 1(27- w")= -P(wh,), P-(21r- wh,)P ,(w ),
+ (52a) '

S sin(V ' )5(2-w =l"w), - -,, A ,,e) "'(21r-we)=-'"w ) ,•

(53c)

where
The surface wave field for the half-plane, given by J, can

-= - 1(7 - 0') A (r + 0')F,; rP= P,0 (52b) also be obtained from the two-part problem. Without showing
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(a) (b)
Fig. 5. Field scattered by the two-part impedance plane for an obliquely incident plane wave. (a) TM: polarization: E0, = 1, t70HO,

= 0. (b) TE. polarization: E0, = 0, ?10Ho, = 1.

any details, also important to mention that an obliquely incident plane
wave which is TM Z or TE, polarized, excites a scattered field

f= _rl-w exp (iKp cos (wI -4)-ikz cos 0')U( 1 -k) that has both polarizations as shown in Fig. 5. However, it
must be noted that the TEz and TM, field components become

+ f w exp (iKp cos (ws + ))- ikz cos 0')U(O- 2r + s,) decoupled for a normally incident (0' = 90 °) field.

(54) The results in Fig. 6 illustrate the effect of the angle 0' on
the scattered fields. When 0' = 30, both fields Ez and iioH z

where 0,1 was defined in (40b). Note that in (54), f-" = P , fiw are equally important. However, when 0' = 80, the cross-
= fP and w., = w h if Im(Z) < 0. On the other hand, if polarized field becomes less significant. For example, in Fig.
Im(Z) > 0, fSW = fP, fSW = FP and WS = We 6(a), where the incident field is TM z polarized, the scattered

field ?oHz becomes very small as 0' changes from 0' = 30" toNUMERICAL RESULTS 0' = 80*. On the other hand, in Fig. 6(b). where the incident

Most of the expressions presented in the previous sections field is TE, polarized, the field E, becomes much smaller in
are simple functions which are amenable for numerical relation to the itoHz field when 0' changes from 30* to 80*. It
calculations. The only expression that requires a simple is easy to show that if 0' = 900, the cross-polarized scattered
numerical integration is !(w, ') defined in (62b). This function field is identically equal to zero.
can be efficiently computed with a 12-point Gaussian integra- The other canonical problem that was considered here is the
tion algorithm. In Fig. 5, the field scattered by the two-part half-plane with equal impedances on both sides. In Fig. 7, the
surface is depicted for three-different values of Z2, while ZI is total field is shown for a lossless impedance half-plane excited
kept constant. The incident field is an obliquely incident plane by an obliquely incident plane wave. In order to show the
wave (0' = 45*) with two different polarizations. In Fig. effect of the surface waves excited at the edge of the half-
5(a), the incident field is TMZ polarized (Eo, = 1, Ho, = 0), plane, two cases are considered. First, the impedance ZI is
while in Fig. 5(b) it is a TE, polarized (Ez = 0, H0, = 1) allowed to have a large reactance (Z = i410 ). For this value
plane wave. As expected, when Z2 = ZI, the diffracted field is of Z1 , the effect of the surface wave can clearly be seen in Fig.
zero and the scattered field is just the reflected field. As Z2  7 from 0 = 340* to 0 = 360* where the total field starts to
changes, the diffracted field becomes more important and it increase in magnitude due to the surface wave field. When ZI
begins to interact with the reflected field. As a result of this = i0.2it0 , the surface waves become weaker and the total field
interaction, the magnitude of the scattered field is no longer a decreases monotonically for 0 > 3160, except around 0 =

constant, but fluctuates as depicted in Fig. 5. In addition to the 360, where the presence of the surface wave field is still
diffracted and reflected fields, the surface wave fields also observed. The incident plane wave field in Fig. 7, is obliquely
contribute to the scattered field. It is seen in Fig. 5 that the incident (0' = 450) to the axis of the half-plane, which excites
surface wave fields are significant around 0* and 1800. It is a scattered field with both TM, and TE, polarized components.
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Fig. 6. Field scattered by the two-part impedance plane for two different values of 0': 30%, 80. (a) TM, polarization: Eo 1,
1oH0z = 0. (b) TE, polarization: Eo, = 0, Ho, = I.
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Fig. 7. Total field excited by a plane wave obliquely incident on a lossless impedance half-plane. (a) TM, polarization: E0, . ,

noHo, = 0. (b) TE, polarization: E0, = 0, i 0H0, = i.

In Fig. 7(a), the incident field is TM, polarized, while in Fig. However, as 0' gets closer to 90* (8' = 80), the cross-

7(b) it is a TE, polarized plane wave. polarized component of the scattered field approaches zero. U
The last example considered here is depicted in Fig. 8

where the total field was calculated for two values of 0'. In CONCLUSION

Fig. 8(a), the incident field is TM, polarized, while in Fig. The electromagnetic diffraction of a plane wave by a two- I
8(b), the incident field is TE, polarized. As expected, when 0' part surface and by an impedance half-plane was studied in
is small (' = 25), both fields E, and i70H are significant. detail. The incident field was assumed to be a plane wave of
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Fig.8. Total field excited by a plane wave obliquely incident on an impedance half-plane for two different values of 0': 25', 80*. (a)

TM, polarization: Eo, = 1, )oHO, = 0. (b) TE, polarization: Eo, = 0, rloHo, = 1.

arbitrary polarization, obliquely incident to the axis of the two- general wedge problem [111, [17]. Furthermore, the elements
dimensional structures. The exact solutions for these canonical of the diffracted fields fa and d, i.e., Ed' and s 0H, are

problems were developed in terms of integrals which can not proportional to the field components E0 and E, of the ray-fixed
be evaluated in closed form. Thus, uniform asymptotic coordinate system defined in [30]. Thus, in the treatment of
solutions, valid for large (Kp), were obtained by applying the canonical diffraction problems, it is convenient to express the
method of steepest descents. These uniform solutions are valid diffracted fields in terms of 1 .

for any angles of incidence and observation for both TM, and To conclude, it is important to keep in mind that for the case
TEz polarizations, however, special care must be taken for the of oblique incidence, the normal components £7 and H of
cases of grazing incidence and/or when ZI, 2 goes to zero or the surface wave field are decoupled. That is, for a given value
infinity. For these special cases, where two or more poles may of surface impedance Z, only one of these field components
coalesce to the saddle point, the procedure described by E7 or H7,w) will be excited. However, when Elw and HsW are

Gennarelli [29] can be followed to obtain a valid solution. computed, both can be nonzero because the matrix 0- I(w) is
The uniform asymptotic solutions presented here were not diagonal.

obtained by taking into account the presence of the geometrical
optics poles (real poles) as well as the surface wave poles APPENDIX I
(complex poles) in the vicinity of the saddle point. The In this Appendix, the most important properties of the
diffracted field was derived by keeping only the leading term Fourier transform that are relevant to the Wiener-Hopf
of order (Kp) -1/2 with respect to the incident field. Thus, if a technique are summarized. A detailed discussion of this topic
more accurate description of the diffracted field is necessary, can be found in many excellent textbooks, one being Tich-
e.g., the diffracted field propagating on the impedance marsh [321. Let the function f(x) (see (16a)) be expressed in
surface, it is necessary to include the next term of order terms of the half-range functions f, and f- which were
(Kp)- 12  introduced in (16b). Note that the subscript (+) in the function

As indicated in [ 18], one possible application of the present f, (x) signifies that this function is identically zero for x < 0,
work is the prediction of the EM scattering by a metallic and the subscript (-) in the function f- means that the second
surface which is partly covered by a thin material coating. function is identically zero for x > 0. Next, assume thatf+ (x)
Another application would be a study of the scattering by a and f (x) have the following asymptotic behavior:
conducting half-plane covered on both sides by a thin coating.
These problems can be treated with the solutions developed f (x)- e"- x,  asx-oo;
here. Furthermore, the results obtained here play an important a
role in the development of a solution for the problem of EM

* diffraction by the edge of a thin dielectric/ferrite half-plane -[] el-x, asx- -oo. (55)
[161, [311.

The solution for fA was written in a very compact matrix
notation which is especially useful when treating the more The Fourier transform of fJ(x), provided f+(x) satisfies
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certain conditions [23], [241, is defined as as indicated in (26). There is also a formal procedure to
I decompose the function X(s); however, in this case it can be

(S) f . (x) eisx dx (56) done by inspection. Without showing the details, R, (s) and
0 _ (s) can be expressed as follows:

where F.(s) is regular in the upper half-s-plane defined by r 21 1(v)
> r [231, [24]. Similarly, the Fourier transform of I(x) is R =(s) kx_) (-kx)d 2 _-(-k,)- 0 2, (s) 0,(s)l

defined by (srk)

F (s) f (x)e dx  (57) (63a)
,/ rA () 2 -1 0 sd (- 6,v k x)C -'( k

where P_(s) is regular in the lower half-s-plane defined by r (s k [)
< T+. Finally, the two-sided Fourier transform 1(x) can be (
written by combining (56) and (57), namely (63b)

where R+ (s) and R -(s) are regular in the upper and lower

F(s) = - f(x)e- dx (58) half-s-planes defined by Im(s) > K2 cos 0' and Im(s) < K2,,/2r--* respectively.

where F(s) is regular in the strip defined by r- < r < r+. APPENDIX III

The inverse Fourier transform of F(s) is then given by In the w-domain, (31) can be written as follows:

Px) = I ,F(s)e - ds; T_<a<T+. (59) f/L Ay(wj)=O= P± (w1) o w+cos -/+A

APPENDIX II

The factorization of the function g(s) (an even function of s) • ( ')() sin 4'F 0y=0 (64) I
defined in (23b), which is regular and free of zeros in the strip where F is a row vector defined in (31) and
- K 2 < . < K 2, means that g(s) can be expressed as the

product of two functions such that r I +cos 0, (
g(s) = g + (s)g - (s); 02 sin

g(s)=g(-s);g+(±s)=g-(Fs) (60) Let

where g.(s) and g- (s) are regular and free of zeros in the f(w 0 )=cos ¢',-cos w-; (Wo)=[l (wo ) ]

upper and lower half-s-planes Im(s) > - K2 and Im(s) < K 2, 0-01 w o )

respectively. There is a formal procedure for obtaining g + (s) (66a)

and g (s). All the details of this procedure can be found in
[24j, f28J. As stated before, the factorization of g(s) is based where

on Weinstein's work [281. It is easier to carry out the
factorization in the w-plane by introducing the change of 1 0 0 1 (66b)
variables given in (33). Thus, on the w-plane, the functions g, 0 -1]
g , and g_ can be expressed as follows: By means of (66), (64) can be rewritten using a more compact

(61) notation, namely
sin w + sin v [ '(Wo)JR(wo) + R(Wo)Aj ;(O' ) (v) sin 0' o = 6.

exp (l(w, v)/2ir)

(cos V +cos w} 1/2 ; (67) I
g. (w) exp [1(r - w, v)/2ir (62a) The expression outside the brackets in (67) is not identically

( [cos v-cos w] /2 zero, which implies that the expression inside the brackets

must be zero. Solving for A, one obtainswhere
R -I(W)t-I(w)R(w) (68)

1(-w, ) s dt. (62b) In the half-plane problem, the expressions for flc and fA are I
needed. They are given by

It follows from (62) that g,(w) = g-(7 - w), g_(w) =
g,(i - w), and g,(2v - w) = g+(w). Another important A'= _(l(wo))-,t-(Wo) C(wo);

step in the Wiener-Hopf procedure is the decomposition of the

function (s) into the sum of the functions R, (s) and R -(s) Am= _()Vm(Wo)) - I(Wo) m(wo) (69a)

"r. I II
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The Bandwidth Performance of a Two-Element
Adaptive Array with Tapped Delay-Line

*I Processing
R. T. COMPTON, JR., FFIiOW. ttFFEI

.4hvrract--The bandwidth performance of a two-element adaptive purpose of this paper is to address this question. In Section 11,
array with a tapped delay-line behind each clement is examined. It is we formulate the equations needed to calculate the output
shown how the number of taps and the delay between taps affect the signal-to-interference-plus-noise ratio (SINR) from an array
bandwidth performance of the array. It is shown that an array with two with M elements and K delay-line taps behind each element.
weights and one delay behind each element yields optimal performance
(equal to that obtained with continuous wave (CW) interference) for any Then, in Section III, we use these equations to determine the
value of intertap delay between zero and T"/B, where Tge is a quarter bandwidth performance of a two-clement array. We show how
wavelength dela) and B is the fractional signal bandwidth. Delays less the performance depends on the number of taps behind each
than T. yield optimal performance but result in large array weights, element and the amount of delay between taps. Section IV
lelays larger than T"/B yield suboptimal signal-to-interference-plus-

noise ratio (SINR) when each element has only two weights. For delays contains our conclusions.

between T/l and 4T,0/B, the performance is suboptimal with only two
taps but approaches the optimal if more laps are added to each element. I1. FORMULATION

Delays larger than 4T"IB result in suboptimal performance regardless of Consider an adaptive array with M elements, as shown in
the number of taps used. Fig. I. Let the elements be isotropic and a half-wavelength

1. INTRODUCTPON apart at the signal frequency wo. Assume each element is
followed by a tapped delay-line with K taps and a delay of To

nuIS WELL KNOWN that the ability of an adaptive array to seconds between taps. The output of the first tap behind each
bandwidt inreas etoaes 11-4.Hwridly ng taed elay-nc element is the element signal itself, with no delay. Let .W,,~)

However, using tapped delay- denote the analytic signal from element m at tap k. Thus, 91 i(t)
lines behind the elements improves the bandwidth perform- is the signal received on element 1, Z,(t) is the signal on
ance. The purpose of this paper is to examine how the element 2, £ 1 2 t) = R11(/ - To),ilk(t) = )?t(t - [k - liT0 ),
improvement depends on the number of taps and the amount of and so forth.
delay between taps nor a simple two-element array. We assume the tap signals are combined by an adaptiveIhe use of tapped delay lines in an adaptive array was first processor. This processor multiplies each fmk(t) by a complexsuggested by Widrow et al. [I I and has since been studied by weight Wink and then sums the signals to produce the array

several others. In one study, Rodgers and Compton [21 output 9(t), as shown in Fig. 1. The adaptive processor could
compared the performance of a two-element array with two-, consist of a set of analog least mean square (LMS) or
three- and five-tap delay-lines using real weights to that of an Applebaum loops [II, 151, or it could be a digital controller
array with a single complex weight behind each element. In based on the sample matrix inverse method [61 or some other
another work, Mayhan. Simmons, and Cummings 13] pre- algorithm. All such processors attempt to adjust the array
sented a mathematical analysis of how the number of elements weights to their optimal values, which are known variously as
and the number of delay-line taps affect the interference the Wiener weights, the LMS weights, the Applebaum
cancellation ratio as a function of bandwidth. Finally, White weights, or the maximum SINR weights. In this paper. we
(41 has studied the trade-off between the number of interfering shall not be concerned with the specific form of the adaptive
signals and the required number of auxiliary elements and processor, but shall simply assume that this processor adjusts

* delay -line taps in an Applebaum array. the weights to their optimal values for any given set of incident
In spite of these contributions, there still appears to be no signals.

simple explanation in the literature for how the number of taps For a given set of tap signals ,k(t), the optimal weights
and the amount of delay between taps should be chosen in an may be found as follows. Let X,, and W,,, be column vectors
adaptive array to achieve a given handwidth performance. The containing the signals and weights at the K taps behind element

m, i.e.,
Manus&ripi rc cived O(tober 15, I986; revised May 15, 1987. This work

wks ,upp'rted in part hy Nasal Air Systems ('romnand under Contract Xm R 1- (), i,,,2(01), ... , r (M)
N 1! ) 85 C 0I 9 and in part h) the Joint Service,, Electronics Program
under Contrac N(10014 78 ( X49 and

Ihe authir is with the FlectroScicnce ILaboratory. 'he Ohio State
I ncrsot . (ilunbus, OH 4 2 12 W ,,, Wm 2, " I . (2)

II , ! I -q! N um b 'er 8 "719(,)4 j W

(X)18-t)26X/8/01X-(XX)5$01.00 ' 1989 IEEEI
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do(t) is a normalized replica of the desired signal to be
received by the array. (do(t) is defined below in (14).) For

S.narrow-band signals, the weight vector W satisfying (5) yields
tMIL - ii - maximum SINR at the array output 151. 171.

t) Zion) The ,mk(t) may be determined from the signals incident on
T the array. For this study, we shall assume the array receives a

W"W, W1 desired signal and an interference signal, and that eachiCh , t 7 .'(o element signal also contains an independent thermal noise
voltage, as would be contributed by a front-end preamplifier
or mixer. Thus, the signal at tap k behind element in has the$ form

Xnk (t) ' dkm 1kM + ikm(t), (8)U

MA M where dk(t), 1 ,(t), and fik(t) are the desired, interference,
2W K " :and noise components, respectively. The element signal

vectors X, and the total signal vector X may then be split insimilar way.

X. = Xm+Xm + Xm., (9)

and
sit)

Fig I. An M element adaptive array with tapped delay lines. X' Xd + X, + X (10)

dk(t), i.(t), and fimk(t) may be determined as follows.
(Superscript T denotes transpose.) We shall call Xm the First, suppose the desired signal arrives from angle 0d. (0 is
element signal vector and W,, the element weight vector, defined in Fig. I.) Let d(t) be the desired signal waveform asThen let X and W be the total signal and weight vectors for received on element 1. The desired signal at an arbitrary tap is
the entire array then

X1 dmk(t)=d(t- [k- I I To- l- I I Td), (11) "

X 2  where To is the delay between taps and Td is the desired signal
X= - - (3) spatial propagation delay between elements,

L
Td - sin (6d), (12)c

with L the element separation (see Fig. 1) and c the velocity of
and propagation. We assume d(t) is a zero-mean, stationary,

"W, " random process with average power Pd,

Pd= E Id(l)121. (13)W2
W , (4) The signal wrd(t) in (7) is identical to d(t) except normalized to

have unit power,

where we use a partitioned vector notation. The optimal d VPd

weight vector in the array is then given by 11, [51 Next, assume the interference arrives from angle 0, and has

W=4 iS, (5) waveform i(t) at element I. The interference signal at an iarbitrary tap is then
where (P is the signal covariance matrix, ik(t)=(t[k 11To-[m- IT), (1)

4= EX*X TI, (6) where T, is the interference propagation delay between
and S is the steering vector (or reference correlation vector), elements,

S=E[X*do)(t)J. (7) LIn these equations, the asterisk denotes complex conjugate and , -c sin (6,). (16)

C1
a i I l 1 I l II I I I I I I I I I I I II I ! U
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We assume Ft) is also a zero-mean, stationary, random Sa'lw) I
process, statistically independent of d(t), with power pi, (17 {

p,=E[Ji(t)J 1. (17) LW----

Finally, assume each element signal contains a zero-mean - ,0
thermal noise voltage ,i,,,(t) of power a2, statistically indepen-
dent between elements. Thus, (a)

Eiti~t(t)1 ,(t)] =o'6jm, I <j, m:_M, (18) S-Tw)
21rPl ~

where 6 ,"t is the Kronecker delta. The noise signal at an that ji arbitrary tap is .Just a delayed version of the noise on that
e le n e n t. w oa

fl,,, t) = iJ(t - [k - I] To). (19) (h)

Ir,,The are asmdindependent of d~)and F~t). S, (A )With these definitions, we may determine ,b and S in (6) and 2raZ - n

(7). Because the desired, interference and thermal noise terms 6w,

are mutually independent and zero-mean, 4I splits into desired, I,
interference, and thermal noise terms, wo

4= (d+ 4), + 4,. (20) (c)
Fig. 2. Power spectral densities. (a) Desired signal. (b) Interference. (c)

Consider 4),1 first. In partitioned form, *bd is Thermal noise.

( .d I f 1d,w Pd is the desired signal power received per array element, as
defined in (13), and sinc(x) denotes sin(x)ix.

For a specific arrival angle Od and tap delay To, the matrix
P d, 4i ,(2 d in (21) can be determined by substituting (25) into (23).

Pd " "(21) Before doing that, it is helpful to write the autocorrelation
function in (23) in normalized form. From (25), we have

R t[(j-k)To +(m-n)Td Pdsinc e [(jlk)To
-- 2

* ldt," "€dMM -

+ (m - n) Td]] ei [l(J-k)T° +(m - n)Tdl . (26)

where each K X K submatrix (d., is the desired signal
covariance matrix associated with a pair of element signal Note first that the product AWdTd may be written
vectors Xdn and Xd, AWd Td = A d (WO TO = Bde, (27)

bd," = EI X* XI (22) W0

(bdmn may be found by substituting dmk(t) of 011) into (22). The where Bd is the desired signal relative bandwidth,
Ikth term of 4d,, (the element in the jth row and kth column Awd

of 4tdm,) is found to be Bd - , (28)
o0

[(P, ,lk = Rd[(j - k) To + (m -n) Td], (23) and Od is the interelement phase shift at the carrier frequency
where Rl(r) is the autocorrelation function of the desired wo0 ,signal d(t), woLsd=WOTd= - sin (0A). (29)

Rj(r) = Eld*(t)d(t+ r)J. (24) C

In addition. it is helpful to write To, the time delay betweenTo have a specific case to use for calculations below, we shall taps, in normalized form. Because earlier papers have often
assume dtt) has a flat. bandlimited power spectral density assumed a quarter wavelength delay between taps 121, we shall

Sg(w) equal to 2Tpd/Aw~d over a bandwidth At~d centered at arbitrarily normalize To to the time delay associated with afrquency wo, as shown in Fig. 2(a). Rj(r) is then the inverse quarter wavelength delay. The time delay required to produce

Fourier t,-ansform of Sd(w). or a 90* phase shift at frequency wo is

I R,1(r-) = pd sinec _ e-07o .  (25) T90 = -" (30)2!w
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Therefore we write To in the form and Oi is the interelement phase shift for the interference at

carrier frequency wo,
T=rTo=2Oo'(31) o0L

2woO =woT,-= sin (0). (41)

where r is the number of quarter-wave delays in To at
frequency wo. Then we also have The noise matrix 4,, in (20) is slightly different because the

noise is independent between elements, so the noise cross

AWd To = A rBd. (32) products are zero except for those associated with the same 3
2wo 2 element. We have

In terms of the normalized parameters Bd, kd and r, the jkth 1, 0 " 0
element of t

) d., is - - -J --

[ jk =pd sinc (j- k)r + (m - . (42)

ej[r/
2
(i-k)r+(m-n)d. (33) 0 -I,,-,

The interference matrix I,, in (20) may be found in the same
way. 4I, is We assume the noise power spectral density Si(w) is equal to

r' 2ro 2/Ac., over a bandwidth Aw,, as shown in Fig. 2(c). The
.. .. ..-- -jkth element of ,,,m is then 3

'i2, CI 2_
-) d -. , (34) 141nmm]jk=a 2 sinc j!(j-k)rir ej(w/ 2Xj-k)r, (43)

4 i

.... .. where B,, is the relative noise bandwidth,
BI = .- (44) U

where each K x K submatrix 'j,,,,, is the covariance matrix for W0U

the element signal vectors Xi,, and X,,, We have now obtained all terms in the matri 4 of (6).
4" mn = X (3) Next, consider the reference correlation vector S in (7).

I inX* (35) Because the interference and noise vectors Xi and X,, are
The jkth element of 4,,n is independent of d(t), the only term that contributes to S is Xd,

lImnjk =RA(j- k) To + (m-n) T, (36) S=E[X*o(t)I=EIX do(t)l. (45)

where Rj(T) is the autocorrelation function of the interference, Substituting for Xd and using (14) gives
R-(r) = E[I *(t)T(t +r)]. (37) S=[s11, S12, ""~ ",six 21, S22, '"", s2K,",I

We shall assume the interference also has a flat, bandlimited SMI, SM2, ",SMA] r (46)
power spectral density Sr(w) equal to 27rpi/Aw, over bandwidth where
Aw,, as shown in Fig. 2(b). p, is the interference power
received per element. R,-(r) is then S,=p c Ir +

R,(r)=p, sinc --- eJ0 T . (38) .ejjv12(k-I)r+(m- )0dI" (47)
in (35) and normalizing as in (32) gives From 4' and S, the optimal array weight vector may be

Substituting T and T, i(computed from (5).

1, [In solving (5), it is helpful to make one more normalization.
f, Ijk = P, sinc - (j - k)r + (m - n)46j Every element of the matrix 4'1 d contains the constant Pd, every2 2 element of 4, contains pi, and every element of 4,,, contains a'.

.ej(ir/2(j-k)r+(m-n)~iI (39) If we divide the entire set of equations by 02, the solution fore~l/2(-*) (m-)¢i" (9) W will then depend on the normalized parameters

where B, is the relative bandwidth of the interference, Wwlth desed rai p ers

At, Pd = desired signal-to-noise ratio (SNR) per element,
B, = --, (40) 0

o (48)
_ _ _ _ _ _ _I
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and 20

P,=-= interference-to-noise ratio (INR) per element. (49) SINR

From the optimal weight vector W, we may compute the 0  . 2

output SINR at the array output. For a given W, the array
output signal .(t) is -90 0 90

SI)=WT'(0 e i (DEGREES)

gg(t)=. 3. SINR versusO,:M = 2, K = I,Od = 0* .d Oda. k, = 40dB.

where X is the signal vector in (3). By writing Xas in (10), we
may split At) into its desired, interference, and noise behind each element. In this figure, the desired signal arrives
components, from broadside (Od = 0°) and the interference from an

arbitrary angle O,. The SINR is plotted as a function of 0,. The
(51) desired, interference and noise signals are all assumed to have

I where the same bandwidth B, and Fig. 3 shows the SINR for B = 0,
0.01, 0.02, 0.05 and 0.2. d. the SNR per element, is 0 dB and

Sd(t) = WTXd, (52) ,, the INR per element, is 40 dB for all curves.
' tFig. 3 shows that when B = 0.02 the output SINR has
,(t) = WrX,, (53) dropped about 3 dB below its value with CW (zero bandwidth)

and signals. Larger bandwidths quickly reduce the SINR more.
For B = 0.2, the largest value we show, there is as much as 22

g,(1)= WrXn. (54) dB degradation for some 0i.I For such large bandwidths, the

The output desired signal power is then array performance is clearly unsuitable.
Now suppose we add a single quarter wavelength delay and

P one extra tap behind each element. (In the equations above, we
Pd= E[Id(t)121 let K = 2 and r = 1.) Fig. 4 shows the output SINR that

results for this case with B = 0.2 and with all other
I E[ parameters the same as in Fig. 3. We see that the array now
2 E[ Wx dw] performs essentially as well as the simple array in Fig. 3 with

CW signals. Thus, adding a single extra tap to each element,
WI- Wttd W, (55) with a quarter wavelength between taps, has fully overcome

2 the bandwidth degradation.
Figs. 3 and 4 were computed for 0d = 0". However, the

where the dagger denotes the conjugate transpose. Similarly, results are similar for other values of Cd. In general, when the
the output interference and thermal noise powers are array has a single weight behind each element, the SINR for B

= 0.2 is much poorer than for B = 0. But if a single quarter
Pi = - WtI, W, (56) wave delay and one extra tap are added to each element, the

2 performance is fully restored.

Now consider what happens if we change the amount of
delay between taps. The curve in Fig. 4 was computed for a

I 14 one-quarter wavelength delay between taps (r = 1), an

P 2-- W44 W (57) arbitrary amount. When other values of r are used, one finds
an interesting result: the array output SINR is hardly affected

Finally, the output SINR is by r! On the one hand, if r is reduced below I, even to
arbitrarily small value, the SINR is not noticeably different

Pd fromthat forr = I. Aplotof SINR versus0 forr = 10 -, for
SINR = P, + P, (58) example, looks identical to Fig. 4. On the other hand, if r is

raised above 1, there is also very little change in SINR. until
In the next section, we apply these equations to a two-element the delay exceeds about two wavelengths. For example, Fig. 5
array. shows the SINR versus C, for r = 5, 10, 15, 20 and 25 and for

all parameters the same as in Fig. 4. Note that when r = 5 the
1Il. THE PERFORMANCE OF A TWO-ELEMENT ARRAY SINR still achieves the optimal value shown in Fig. 4. When r

Now let us consider the bandwidth performance of a simple 10 the SINR has dropped about I dB below optimal. (r =

two-element array with tapped delay-lines and see how this
performance depends on the delay line parameters. 'In general, the amount of degradation for a given bandwidth is strongly

First, for later comparison, we show in Fig. 3 the SINR of a influenced by the INR. The larger the INR, the more sensitive the arra) is to
interference bandwidth. In this discussion. we shall simply present results for

two-element array with a single complex weight (and no delay) an INR of 40 dB.I
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20 elements and makes it difficult to null the interference by
subtracting one element signal from another. However, if the

a- , filters H(t) and H 2(w) satisfy (61), the factor e-Jwr, in (61)
SINR will delay the interference an additional time T in element I to
(dB) \restore its correlation with the interference on element 2. The

minus sign in (61) will then make the interference cancel at the
-4010 array output.

-90 0 90 Before considering what happens as r is varied, let us see
e i (DEGREES) how well (61) is satisfied by the arrays considered in Figs. 3-

Fig. 4. SINR versus 0,: M = 2, r = 1, K = 2, B = 0.2, Od = 0kd = 0 5. Note that to satisfy (61), the transfer functions Hi(w) and
dB, k, = 40 dB. H 2(w) must have identical amplitudes,

20_1H, (w) I = I H 2(w), (62)

r ,5 rO 15 and phases whose difference varies linearly with frequency,

SINR -HI(w)= LH 2 (w)-7r-wT, (63) (dB) '' -- (3

F o0 25 Vover the signal bandwidth. For the array in Fig. 3, we assumed

one weight and no delays behind each element. For this case
-90 0 90 Hm(w) is simply

. t(DEGREES)2, , .. d=0,' d.~ Hm (W)z =win1, (64)
Fig. 5. SINR versus M: M =2K 2, B = 0.2, = 0% G dBw.6

which is a constant independent of frequency. With such an

10 corresponds to 2.5 wavelengths of delay between taps.) For Hm(w), it is possible to satisfy (61) at one frequency, but not

r = 15 and above, the degradation is more serious, particu- over a band of frequencies. For the array in Fig. 4, however,

larly for 0i near ± 90. we assumed two weights and one delay behind each element.

Thus, the array performance is rather insensitive to r. Any In this case each H,(W) has the form

value of r in the range 0 < r < 5 yields essentially the same =(
SINR. At first glance, this results seems puzzling, especially H,(W)= Wmi + Wm 2eJ To. (65)
the fact that the SINR is unaffected when r approaches zero. Because of the term e-iwro, the Hm(W) can now vary with
Intuitively, it appears that a tapped delay-line should become frequency. This capability allows H(w) and H2(w) to do a
equivalent to a single weight when the delay is very small, better job of satisfying (61) over the signal bandwidth and
However, this is not the case, as we shall see below, hence improves the array bandwidth performance, as Fig. 4

To understand the effect of r on the array performance, we shows.
consider the transfer function of the array as seen by the Examination of the HI(w) and H2(w) that actually result
interference. Let Hm(w) be the transfer function of the delay when each element has two weights and one delay confirm that
line behind element m in Fig. 1. In general, with K taps and K the processor does attempt to satisfy (61). For example, Fig. 6
- I delays behind element m, Hm(w) is shows jHI(w)/H 2(w)1 and / HI(w) - / H2(w) versus w for

H. (w) = w. I + w,2e - iTo + "'" +Wmre - j w( - 1) To. (59) the same parameters as in Fig. 4: Od = 0% Ed = 0 dB, ti = 40dB,r = I and B = 0.2, and for Oi = 20*. It may be seen how

The transfer function of the entire array as seen by the IH(w)1H 2(w) = 0 dB and -HI (w) - L H2(w) varies

interference H,{tw) is then linearly with frequency over the signal bandwidth. The slope
of z HI (w) - z- H2(w) has the proper value to satisfy (61).

M Now consider how the delay between taps affects the
Hi () = y Hm(wj)e - m - ri, (60) performance. First, suppose we let r approach zero. For very I

M=1 small r (small To), H,,(O) in (65) becomes

where T, is given in (16). To null an interference signal Hm(),)= Wm, + Wm2 cos coTo-jWm2 sin wT 0

completely, H,(w) must be zero over the interference band- W
width. For the special case of a two-element array, as wmi+wm 2 jwi2WTo. (66)
considered in Figs. 3 and 4, H(w) will be zero if We observe that no matter how small To is (as long as To

HI(to)= -H 2()e -Jwri . (61) 0), the array can always realize any given linear slope for
/ HI (w) - / H 2(w) by making the weights suficiently large.

The physical meaning of (61) is easy to see. An interference Calculations show that that is what happens. As r is reduced

signal from angle 8, arrives at element 2 a time T later than at toward zero, the weights obtained from (5) increase without
element 1. When the interference has nonzero bandwidth, this bound. Fig. 7 illustrates this behavior. It shows Re (w 1 ) and

delay reduces the correlation between the signals on the two Im (w,1 ) as functions of r for Od = 00. O, = 20, Ed = 0 dB, E,
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20 single weight behind each element as r - 0. With two weights
and one delay, the SINR obtained versus 0i does not change
significantly from that in Fig. 4 as r - 0.

The unbounded increase in the weights as r -- 0 is1, (.Il dB understandable if we also note that the covariance matrix in (6)
IH2 (w)' becomes singular when r goes to zero. As r -" 0, the signal

R Xm 2(t) at the second tap becomes equal to R.1(t), the signal at
the first tap. In the limit, when two tap signals are equal, the

- 1 A covariance matrix in (6) will have two identical columns (or
._ A H0. rows) and hence will be singular. Thus we should expect theBANOWIDTH 0 .2 w weight vector W satisfying (5) to exhibit unusual behavior as r(a) 

- 0-4 0.

o In a hardware array, there is always a limit to how large the
weights can actually become, of course. With analog weights,
the circuits always saturate at some point. With digital
weights, finite register lengths limit the maximum attainable

z weight values. Because the weights cannot increase indefi-
nitely in a real array, there will be some minimum value of r

for which the array can maintain the SINR. Below this
minimum r, the SINR will drop. 2

Now consider what happens if we increase r. We showed in
IO Fig. 5 that when r is increased, the array performance is

w _ FREQUENCY unaffected at first. But finally, for large values of r, the
BANDWIDTH= 02w performance begins to drop. The explanation for this behavior

(b) may again be found by considering the Hm(j).

Fig. 6. The transfer functions H,(w) and H2(w): r = i, K = 2, B = 0.2, 0, For any value of r, nulling the interference requires the
=0", 0, = 20", Z, G riB, , = 40 dB. (a) jH,(oo)j/lH2(ow)j versus wo (b) transfer functions Ht(ow) and H2(wo) in a two-element array toLH, (w) - LH 2(w) versus w. satisfy (61) over the interference bandwidth. However, note

that Hm(w) in (59) is a periodic function of frequency. (It is a
0,finite Fourier series). The period of Hm(w) is

= _ 4 0 .. .. (67)To r

For small r, this period is much larger than the signal
Im {, }l bandwidth. But when r is increased, the period drops. flo will

I - equal the signal bandwidth when
- / 4

0 r=- (68)
IRew} B

-, When r is small and the period is much larger than the

i im bandwidth, zHj(w) - / H2(w) can easily approximate a
linear function of frequency over the signal bandwidth (as seen

0' /in Fig. 6 for example). But if r is large enough, the period f-o
becomes comparable to the signal bandwidth. Because theII Hm(w) are periodic, it then becomes difficult for the Hm(w) to

0 Isatisfy (61) over the whole bandwidth. In particular, when r >
io' o' o- 10' 100 10 4/B, z H,(w) - z H 2(w) cannot vary linearly over the entire

r NO OF X/4 DELAYS BETWEEN TAPS bandwidth, because its value must repeat periodically within
Fig. 7. w1 , versus r: 0a = 0% 0, = 20, k = 0 dB, t, = 40dB, B 0.2. the bandwidth. This is the reason array performance drops

when r becomes too large.
Fig. 5, computed for B = 0.2, illustrates this point. For B

40 dB and B = 0.2, the same parameters as above. The = 0.2, the period %2 will equal the signal bandwidth when r =
other weights behave similarly as r can 0. 20. One finds that there is no drop in SINR for r up to aboutThus, by increasing the weights, the array can satisfy (61) five (which is I/B). Beyond five, the SINR drops asr

regardless of how small r becomes (as long as r * 0). This is

the reason an array with two weights and one delay behind 2There will also be convergence difficulties for most weight control
each element does not become equivalent to an array with a algorithms as r -- 0. because the eigenvalue spread of 4 becomes infinite.

I
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approaches and then passes 20. We find the same general 20

result for all values of B (up to B = 0.5): when the array has K - 16,8

two weights and one delay behind each element, the SINR 0
is unaffected by r as long as r is in the range 0 < r < I/B. SINR

The performance degradation for large r may also be (dS) -* 2 4

understood from a time domain point of view. Signals with
nonzero bandwidth remain correlated with themselves for time -401 I I I I

shifts up to approximately the reciprocal of the bandwidth. -90 0 90

Hence, one would expect that adding an extra delay and tap to 6, C DEGREES) I
each element will be effective only if the delays are short Fig. 8. SINR versus 0,: r 15, B 0.2, Od 0% t 0 dB. t, 40dB.

compared with the reciprocal of the bandwidth. If the delays
are too large, the signals on different taps become decorrela- ___s_[]

ted, and the array cannot null the interference by subtracting '
one tap signal from another.

The curves in Figs. 4 and 5 assumed two weights and one o
delay behind each element. Let us now consider what happens = "K 2

if we add extra taps (extra delays and weights) behind each - o
element in the two-element array. K- 16 K=

We observe first that adding extra taps can help the 3 -
performance only for a limited range of r. On the other hand,
when r < I/B, the array is already capable of nulling a -
wideband interference signal. Hence for r < I/B there coo FREQUENCY

appears to be no point in adding extra taps. On the other hand, BANDWIDTH 0.2 w o -- I

if r > 41B, the period fl of the H,,() is less than the signal Fig. 9. /_ H,((w) - , H,(,,) versus Wi: r 15. B - 0.2. Od 0, 0, =

bandwidth. In this case the Hm(w) cannot satisfy (61) over the 8o*. k = 0 dB, t, 40 dB.

signal bandwidth, regardless of how many taps are used,
because / H,(w) - z H2(w) must repeat periodically within 20

the signal bandwidth. Hence the only case where extra taps K-16, 8

may be useful is when 1/B < r < 41B. In this range, the 0 I
period of H,(w), although larger than the bandwidth, is small - 4 " 0SINR -- 2J"

enough that with only two weights and one delay / H,(wJ) - (dB) 2

LH(w0) does not vary linearly with frequency. However, VI
adding more Fourier terms in (59) will allow LH((o) - -40 I .
L H2 (w) to approximate a linear behavior more accurately. -90 0 90

Let us illustrate this behavior for B = 0.2. First, for r < 6i(DEGREES)

(I/B) = 5, no extra taps are needed. An array with one delay Fig. 10. SINR versus 0,: r = 22, B = 0.2, 0
d = 0*, . = DdB, t, = 40

and two weights already has optimal performance, as may be dB.

seen in Fig. 4. Next, for 5 < r < 20, we find that with only
two weights and one delay, the SINR is reduced from that in and / H,(w) - z H2(w) repeat periodically within the signal
Fig. 4. Fig. 5 shows this behavior. However, for this range of bandwidth. Also, IH,(w)/H 2(o)j # I at some frequencies
r, the performance will improve if we increase the number of within the bandwidth, and L H, (w) - / H2(w) is not linear
taps. Fig. 8 shows the SINR versus 6i for r = 15 and for K = across the bandwidth, regardless of how many Fourier series
2, 4, 8 and 16 taps. As may be seen, for this r the perfomance terms are used in the Hm(W).
is ir roved by increasing K. The reason for this improvement Whether an adaptive array should be operated with r in the
is st I in Fig. 9, which shows z HI(w) - ,H 2(w) versus w range I/B < r < 4/B and with a large value of K depends on
for the same values of K and for 6, = 80*. L_ HI(w) - how the array is to be implemented. For an array with analog
/ H2(w) becomes more nearly linear with w over the signal control loops, there is no reason to use such a large r. For one
bandwidth as K increases. (lHj(o)IH2(w)f is unity over the thing, it is difficult to implement long time delays between
bandwidth for all four values of K.) taps. For another, each weight in an adaptive processor adds

Finally, when r >(41B) = 20, we expect poor nuing cost and complexity to the processor. To obtain good
performance no matter how many extra taps are added, bandwidth performance from the array, it is simpler just to use
because / H,() - L H2(w) is periodic with a period smaller a small value of r, such as r = 1, and to use only two weights
than the bandwidth. Fig. 10 shows such a case. It shows the and one delay per element.
SINR versus 0, for r = 22, (with B = 0.2, Od = 00, d = 0 For an array with digital weight control, on the other hand,
dB, E, = 40 dB) and for K = 2, 4, 8 and 16. As may be seen, an A/D converter will be used behind each element. In this
the SINR improves somewhat with K but never achieves the case it may be useful to have a large value of r, since a large r I
value in Fig. 4. Fig. I I shows IH,(w)/H2(w)I and z H, (w) - corresponds to a low sampling rate. However, if r is large
z HI(w) for this case with 0, = 80*. Note how IH,(w)/H2(w,)I enough, more weights will be needed, as discussed above. I
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, - Fig. 12. The transfer function Hd(w): r = 15, B = 0.2, 0d = 0%.0, = 80,
0% 0, = 80, d = 0 I, i, = 40 dB. (a) jHj(w)I/IH 2(.,) versus w. (b) e = 0 dB, t, = 40 dB. (a) IHd(w)I versus co. (b) z Hd(w) versus w.
z H, (w) - /_ H,,(w) versus w.

B, one finds that IHd(w)I becomes more nearly constant and
Increasing the number of weights may be easier than in an z Hd(w) becomes more nearly linear with frequency as the
analog array, but will still add to the complexity of the weight number of weights K is increased. Fig. 12 shows a typical
control algorithm' case. It shows IHd(w)I and / Hd((w) over the signal bandwidth

Another factor that must be considered when r is large is the for r = 15 and K = 2, 4, 8 and 16, with all other parameters
effect of the array on the desired signal. In general, an M- the same as in Figs. 8 and 9. Note how the behavior of Hd(w)
element array presents a transfer function improves as k increases. On the other hand, for r > 4/B,

Hd(w) cannot have the required behavior over the signalM

H(w) = H,,(w)eJwr - )d (69) bandwidth, because the Fourier series period is less than the

signal bandwidth. In this case, there is always at least some
desired signal distortion, no matter how large K. It is clear that

to the desired signal, where Td is given in (12) and H,,(w) in a designer must take the behavior of Hd(w) into account when(59). If Hd(w) has anything other than a constant amplitude a large value of r is used.
and a linear phase slope over the desired signal bandwidth, the
desired signal waveform will be distorted in passing through IV. CONCLUSION
the array. Whether this is a problem or not depends on the This paper has considered the bandwidth performance of a
desired signal waveform and the application. However, for two-element adaptive array with tapped delay-lines behind the
many communication systems, it is difficult to accommodate a elements. Section II presented the equations needed to
desired signal whose waveform changes as the array adapts. compute the output SINR for an array with an arbitrary

Because the array responds to the incoming signals, Hd(w) number of elements and taps. Section III described how the
depends in general on all the signal parameters: the desired number of taps and the amount of delay between taps affect the
signal power and arrival angle and the interference power and SINR for a two-element array.
arrival angle. However, for the two-element array considered An array with two weights and one delay behind each
above, calculations show that when r is small (r < 1/B), element yields optimal performance (equal to that obtained
IHaw)l is constant and z Hd(w) varies linearly with fre- with CW interference) for any value of delay greater than zeroquency. But when r > I/B, Hd(w) can vary substantially over and less than Tqo/B, where Tqo is the time delay for a 90*the desired signal bandwidth. For r in the range I/B < r < 4/ carrier phase shift and B is the fractional signal bandwidth.

For the discrete LMS algorithm (I], the computational burden increases Delays less than T9 yield optimal performance but result in
linearly with the number of weights. For the sample matrix inverse method large array weights. Delays larger than Tgo/B yield suboptimal
i6i,. increases with the cube of the number of weights. SINR when each element has only two weights.I
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For delays between Tgo1B and 4T901B, the performance is [51 S. P. Applebaum, "Adaptive arrays," IEEE Trans. Antennas
suboptimal with only two weights but approaches optimal if Propagat., vol. AP-24, no. 5. pp. 585-598, Sept. 1976.
more delay-line sections and weights are added to each 161 1. S. Reed, J. D. Mallett, and L. E. Brennan, "Rapid convergence ratemoredely-lne ectins nd eigts ae adedto ach in adaptive arrays," IEEE Trans. Aerospace Electron. Syst., vol.

element. Delays larger than 4Tgo/B result in suboptimal AES-JO, no. 6, pp. 853-863, Nov. 1974.

performance regardless of the number of delays and weights [71 C. A. Baird, Jr., and C. L. Zahm, "Performance criteria for
narrowband array processing," presented at 1971 IEEE Conf. Decision

used. and Control, Miami Beach, FL, Dec. 15-17, 1971.
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A Selective Modal Scheme for the Analysis of EM
Coupling Into or Radiation from Large

- Open-Ended Waveguides
AYHAN ALTINTA$, PRABHAKAR H. PATHAK, FELLOW, IEEE, AND MING-CHENG LIANG

Abftract-The problem of electromagnetic (EM) coupling into or The present approach is based on the ray optical characteri-
radiation from open-ended waveguides is addressed here. Of particular zation of the waveguide modes in terms of a set of equivalent
interest is the high-frequency range where a large number of propagating modal rays, either directly or through asymptotic approxima-
waveguide modes can be excited and conventional procedures requiring a
summation over a large number of propagating modes can become tions to the modal field expressions. Some examples of modal
cumbersome and inefficient. A selective modal scheme is proposed based rays are illustrated in Fig. 1. Each set of modal rays exhibits a
on the observation that the modes which contribute most significantly to linear or almost linear phase distribution in the waveguide
the fields coupled into the waveguide are those whose modal ray aperture. Using a Kirchhoff-type approximation in the aper-
directions are most nearly parallel to the incident wave direction. This ture integration (Al), the far field radiated into the exterior by
concept is illustrated by calculating the EM radiation and backscattering prte ri btin cosists ofdpatens wh ave
from open-ended parallel-plate, rectangular, circular, and sectoral wave- such aperture distributions consists of patterns which have
guide geometries. The calculations employ the usual geometrical optics, beam maxima in directions perpendicular to the wavefronts of
aperture field, and Ufimtsev edge current techniques. Also included are the corresponding set of modal rays in the aperture. Therefore,
some measured results which further verify the accuracy of the above for a given observation direction, only those sets of modal rays
computations. in the aperture which radiate beam maxima closest to this

I. INTRODUCTION direction contribute significantly; other modes (modal rays)

A SELECTIVE modal scheme is proposed in this paper to radiate sidelobes in that direction and generally yield a
efficiently analyze the problem of high-frequency (HF) relatively small contribution. It is known that the edge effects

electromagnetic (EM) coupling/penetration into or radiation included in the Kirchhoff-based Al are not as complete as
from open-ended waveguides. This scheme is based on the those predicted by the geometrical theory of diffraction (GTD)
phenomenon that at sufficiently high frequencies, the modes [71 especially for wide-angle radiation; thus the Kirchhoff
which contribute most significantly to the fields coupled into approximation is improved via a modification of Ufimtsev's
the waveguide are those whose modal ray directions are most physical theory of diffraction (PTD) [81 presented in [91 to get
nearly parallel to the incident wave direction [II]. Even though the generally small correction to the edge effects predicted by
the transmission of EM energy at HF into semi-infinite open- the Kirchhoff-based Al [10]. The additional correction result-
ended waveguides has been discussed extensively in the ing from the multiple-edge diffraction of modal rays across the
literature [21-[61, the above mentioned fact does not appear to aperture is assumed to be negligible for large waveguides, and

I have been exploited previously. This observation applies it is thus ignored.
eqially well to the reciprocal problem of EM radiation from Section II discusses the Kirchhotf-based Al and the Ufimt-
the open end where only those modes whose modal ray angles sev-type contributions to the modal radiation from semi-
are most nearly parallel to the desired radiation direction infinite, perfectly conducting parallel-plate, rectangular, cir-
contribute strongly to the radiated field. This fact is especially cular, and sectoral waveguide geometries as shown in Fig. 1.
useful at high frequencies where a direct modal analysis In all of these geometries the modes will be classified as
becomes cumbersome and inefficient due to the existence of a transverse electric (TE) or transverse magnetic (TM) to the z-
large number of propagating modes inside the waveguide direction. The explicit expressions for the modal radiation are
cavity region. presented in the Appendix. The EM fields coupled into these

open-ended waveguides illuminated by a plane wave can be
Manuscript received November 12, 1986. revised August 19. 1987. This found directly from the solutions to the above radiation

work wa.s supported in part by the NASA/Langley Research Center under problems via reciprocity. It is noted that the Kirchhoff-based
Contract NSG 1613. by the Joint Services Electronics Program under Contract aperture integral (Al), which essentially constitutes a physical
N00()4-78-C-(X)49. and by USAF/AFSC, Aeronautical Systems Division, optics (PO) approximation, gives results which satisfy reci-
Wright Patterson AFB, Ohio, under Contract F33615-84-K-1550 with The
Ohio State University Research Foundation. This work was also submitted by procity only in the main beam direction. However, when the
A Alimta, as part of a dissertation to The Ohio State University in partial Ufimtsev correction to the PO approximLtion is included, it
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A Altinta , was with the ElectroScience Laboratory. The Ohio State then tends to restore reciprocity in directions away from the

University. Columbus. OH He is now with Bilkent University. Ankara, main beam as well. The results of Section II are then employed
Turkey in Section III to analyze the more general problem of EM

P H Pathak and M. C. I.iang are with ElectroScience laboratory. The plane-wave backscattering from open-ended waveguide cavi-
Ohio State tmersity. Columbus, OH 43212H IEVE Lo2 Number 8718(9 ties. In particular, the two cases treated in Section III are those

0018-926X/88/0100-0084$01.00 (F) 1988 IEEEH



AIIINIA.\et a). SFI.FcI\'E MODAL SCHEME FOR ANAI.YSISOF EMCOIPLIN6 85

MODAL RAY DIRECTIONS

I

(a) (hd

n MODAL MODAL~ ~j,

Fig~ I.- Radiation from (a) the parallel plate ",aseguide: b) the rectangular v~a',guide; (c) the circular ',,a'eguidc; (di the s.ectoralI

waveguide. =,
pertaining to the EM backscatter by open-ended circular, and and reflection shadow boundary (ISB and RSB) directions
ntonuniorm (piecewise linearly tapered) waveguide cavities correspond to this modal ray direction. The field pattern ofI

with an interior planar short-circuit termination. Again, it is each mode is composed of two sin ( )/ functions with their I
observed that only a few selected ones out of a large number of peaks in the modal ray shadow boundary (SB) directions (see
propagating modes contribute strongly to the backscattered Fig. 2). It is also noted that if one considers the radiation only

field for each backscatter direction, and a good comparison is from the nth odd (or even) mode, the peak radiation occurs at I
obtained between the calculated results and corresponding sifl 0 = nir/ka. In this shadow boundary direction the other
measurements on actual models. Finally, some conclusions odd (or even) modes have a null in their pattern. Therefore,
are given in Section IV. around this direction only the nth mode and the two I

An ej'' time convention is assumed and suppressed for the neighboring even modes are mainly responsible for the [
field expressions. k refers to the free-space wavenumber. and radiation. The contributions from other modes interfere

Z0= Y0 is the intrinsic impedance of free space, mostly destructively especially in the case of a large wave-

guide where there are many propagating modes. In compari-I
il. MODA. R..\o..TIoN FROM S()ML' WAVN-;UU)L GEOMERrIEs son with the exact Wiener-Hopf result [I !l], it is known that

the Kirchhoff-based Al approximation result is reasonably
In this section, the far-zone modal radiation from o)pen- accurate for frequencies exceeding the cutoff frequency by 5

ended parallel-plate, rectangular, circular, and sectoral wave-I percent. It is also known that the Kirchhoff-based Al approxi-
guides is discussed. As indicated earlier, these radiation mation gives exact radiation in the modal ray angle directions
problems are directly related to the problems of the coupling [Ill.
tof an incident plane-wave field into the waveguide modal ThIoa aito atrs bandfo 1)o h

fields The modalrradiation patternsioobtainedefromn(13)Tofsthefieds ia eciroity110 asmetioed n Scton . Tus he Appendix arc compared with the first-order GTD results for
coupling problem will not be explicitly discussed here. nonstaggered and staggered waveguide geometries. In order to

A. The Parallel-Plate Waveguide show the effect of Ufimtsev correction, the mode chosen isI
very close to the cutoff frequency for some small waveguides.

The geometry of an open-ended parallel-plate waveguide isThraitoptensfmteewveidsrehwnn
depicted in Fig. l(a). The expressions for the modal fields and Fis3an 4.TerulsndctththeUnsv
the nmodal radiation are given in the Appendix. contribution imlpro,'es the Al approxinmation primnarily awayI

Each component of the nth modal field can be decomposed from the direction of the Al beam maximum so that it becomes
into the fields associated with two charactcristic plane waves indistinguishable from the GTD result which is known to be

(which propagate along modal rays). The modal rays associ- accurate. I
dred with the pro)pagatio)n tof these modal plane waves make a As mentioned earlier in the Introduction, the Ufinttsev
fixed angle 4f, with the waveguide walls. Specifically. tk, is contribution to the radiated field is generally quite weak in
given by [I0lt comparison with the Al contribution for large waveguides. as

,obser',ed in Fig. 5.

y~co (a)

B. The Rectangulur Waveguide
as illustrated in Fig. I(a) where ¢3, is the propagation constant From the expressions in (20) and (21) of the Appendix, each

Z Ih t
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SB DIRECTION SB DIRECTION four ray-optical parts which follow zig-zag paths inside the

Al, sectoral waveguide [101.
Wa = 40 . 40 The projection of the ray trajectories are depicted in Fig. 7,

4 TE 12 1 and they are tangent to the circular cylindrical modal ray
T2,m caustic and oblique to the parallel walls ofthe waveguidL. The

E,8  radius of the circular modal ray caustic is given by
n 7r

30 6C 90 0 30 60 90 R z- .(5)
DEG DEG kpo

612.1" 2o" 612.1- 2o"

(a) bt Typical results of the numerical integration of the Kirch-
Fig 6 Modal radiation from an open ended circular ,.aeguide. as a hoff-based aperture fields on the planar aperture of Fig. l(d)

function of ele ation angle. are shown in Figs. 8 and 9. Fig. 8 is the modal radiation of the
TE71, mode in the x-z plane. The modal ray shadow boundary

The modal ray representation can be obtained by applying directions of the TIE, mode in the x-z plane are also sketched
the large argument approximation to the Bessel functions and in Fig. 8. As indicated in the figure, the peak of the radiation
each mode consists of two conical modal rays which converge pattern coincides with the modal ray direction. Fig. 9 shows
onto and diverge from the axis of the waveguide [101. The the modal radiation of the TM mode in the x-y plane. The
modal ray angle corresponding to the ninth mode is repre- TMus modal ray shadow boundary directions in the v-v plane
sented by 6,,. in Fig. 1(c). The expression for 6,, is given in are also shown in Fig. 9. It is noted that due to the existence of
(57) of the Appendix. nonparallel walls, the shadow boundaries of the modal rays are

A typical modal radiation pattern is shown in Fig. 6 based not parallel. Therefore. in this case, the dominant modal
on the expressions given in (51) and (52) of the Appendix. The radiation beam is not too sharp and it smears out over the
modal ray shadow boundary direction is also indicated in the region corresponding to the angular separation between the
figure and it is seen that modal radiation has a beam maximum incident shadow boundary (ISB) direction of one edge and the
in the modal ray direction. reflection shadow boundary (RSB) of the other (opposite)

edge. Hence. the efficiency of the selective modal scheme is

D. The Sectoral Waveguide slightly reduced in the strongly tapered case as compared to

The geometry of the sectoral ,'aveguide is shown in Fig. the rectangular waveguide geometry which exhibits sharper
I(d). The ninth TE modal field expressions can be generated modal radiation beams. The sharper the modal radiation beam.
from the z-component of the magnetic field of that ninth mode the less the number of modes required in the selective modal
which is given by [12] scheme.

It is also noted that a Ufimtsev-type correction to the Al can

I k2 sin - Z+jkZ , a 2 rectangular waveguide: hence, these details are omitted here
_ I

in 7r 
for the sake of brevity.

cos I i ~- II H kp)(2)o o L 2 +, o,(ktp) ) 111. Ei FY'IRoNIA(;NiViIj BAcKscAlr IRING FROM A- CIRcuLAR AND

hre A WFAKI Y TAPRFD WAVF6 IIE CAVIT MODFl.

In this section. the EM backscatter results are presented for
a waveguide cavity model, and for a semi-infinite terminated

5r 2
, _(3) circular waveguide. The backscatter returns have two main

a contributions. The energy coupled into the open-ended wave-

and simnilarly the ninth TM modal fields can be obtained from guide from the externally incident plane wave is reflected at an
the --coniponent of the electric field of that nmth mode which interior termination to radiate out of the open end: this

,, hikewls, gixen by 1121 constitutes the interior cavity contribution to the scattered
field. The other contribution to the scattered field comes

It~ [7r(- directly from the exterior diffraction (if the incident wav b
I. k:+ 2 the rini edge at the open end. The interior radiation contribu

tion to the scattercd field i, calculated through the analytical[ i r expresions deve[oped In Section H: whereas, therim scattr-
sin I0+0- )] H" ,Jk,p) (4)

00 2 ing is calculated via the cquiSa!ent current method used in
conjunction with the (;iT) 1131 Fir the short -circuited interior

,A here It '(kpt denotes a cylindrical Hankel function of the termination considercd lie e, the interior cavity contribution to
,C..nd kind of order v m~r'o, in this case) and of argument the scattered field is gencrall\ more significant in this case.
A',o the rint scattcring ma bc impoi-lint \, hen the cavil'. contribu-

Iing the )ebyc asymptotic form for the Hankel function in tion exhibits a pattcrn itit,
the region kp > mn'iO, each mode can be decomposed ilto The backscatter results uibm tealnd hol a selectie modal
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Fig. 7. The projection of ray trajectories in a sectoral waveguide of Fig. 1(d). (a) Projection onto x - y plane. (b) Projection onto
x -z plane.
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S.SHADOW BOUNOARIES
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°o. 10. 20. 30. . _0. _0.

.... ... .P47 (DEGREES)

iFig. 9. Modal radiation of TM,, mode from the open end of a linearly
tapered waveguide in the vertical plane, a = 1O0, o = 20*, and p.o = 14.4' 1.0. 110. 120. 130.30. 0.1

THET( (DEGREESE
Fig. 8 Modal radiation of TEn mode from the open end of a linearly The termination is placed ten free-space wavelengths away

tapered waveguide in the horizontal plane. a = 10 X, o = 20* andp. = from the open end, as shown in Figs. 10 and I1; therefore, the
14.4 X effect of evanescent modes can be neglected. The radius of the

waveguide is 3.34 free-space wavelengths which allows 115
scheme approach are tested against the contribution of all modes to propagate. Figs. 10 and II illustrate the comparison
modes. The numerica! calculations on the cavity model is of the backscattered field b\, including the contributions of all
compared with the experimental results. propagating modes versus those based on including only the
A fmodes Ahose modal ray angles are inside a 100 neighborhood
A. EM Backscattering from a Terminated Semi-Infinite of the observation direction.
Circular Waveguide In the graphs of Figs. 10 and II, the effect of the multiple

The calculations are presented in Figs. 10 and II for the EM wave interactions between the opcn end and t .- termination
hackscattering from an open-ended semi-infinite perfectly are included in the calculations via the gener, ized scattering
conducting ci:'cuia waveguide. The interior of the waveguide matrix technique (GSMT) 1101, [141 with the use of modal
is terminated vith a planar perfectly conducting short circuit, reflection coefficients From the open end given in [101. and it
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is observed that the effect of all the higher order interactions

between the open end and the terminations is small in
comparison with the first-order interaction. Only for suffi-

d" I ciently smaller waveguides, the modal reflection from the

open end is relatively strong in comparison with the aperture
.. -U - . . radiation: in such cases, the multiple interactions are expected

V) .to be stronger and hence they have been included via the

- "__" - GSMT in our computer code.
a I. It is clear from these plots in Figs. 10 and II that by

SIORT X including only the few significant modes, one can substantially
x reduce the amount of calculations without seriously reducing

mr -+ the accuracy.

a:r
7 L B. Electromagnetic Backscattering frnm ' ,.Weikl,'

. .. . .Tapered Waveguide Cavity Model

10. 20. 30. 40. 50. 60. The tapered waveguide model is shown in Fig. 12. It is
THETA (DEGREES) basically an open-ended cavity composed of two waveguide

Fig. 10. Calculated backscattered field from a circular %aveguide cavity in
the o 0' plane cut as a function of the angle from the axis with the sections. The first section is part of a sectoral waveguide with
waveguide radius a = 3.24 X, termination position L = 10 X. E, = E . one end open. whereas the other end of this section is

: all propagating modes included: xxxx: only modes wilh modal ray connected to a second section which is a uniform waveguide
angles closer than 10" are included (normalized to Tra:). with a planar termination at its far end. The exterior of the

second section is curved at the back end to minimize the
..... . scattering coming from the exterior features of the structure.

0:3 1 MO" The model is made of wood and then coated with a conductive

c C'MT paint. The dimensions of the cavity are shown in Fig. 13. The
length "L " is long enough for the effects of evanescent modes

. rto be negligible.
W. The GTD-based equivalent current analysis for the rimLO \ C --- Jt scattering is compared with aset of measurements on theI

U)U
. - . . . model. In order to remove the interior cavity effects, the inner

a :k surface of the back wall of the cavity is covered with absorbing
-- imaterial. The radar cross section (RCS) patterns in the 0 = 0'

I and 0 = 900 planes are shown in Figs. 14 and 15.
Cr: . ., The interior cavity contribution to the scattered field is

0 , calculated using the modal coupling and radiation expressions
of Section 11. At 10 GHz, the first or the sectoral waveguide

S.1 section containing the open end can accommodate 152
,. " TH. 20. 30. 40. 0S . 60. propagating modes. The analytical expression for these modes

can be approximated to yield a propagation constant
Fig I I Calculated backscattered field from a circular waveguide cavity in

the 0 0' plane cut as a function of the angle from the axis with the - m-- U
waveguide radius a 3.34X, termination position L 10 X, E, = 7E. _ (6)

All propagating modes included: xxxx: only modes with modal ray a
angles closer than 10" are included (normalized to -a

2
).

inside the slightly tapered waveguide. In the uniform re,:tangu-
lar second section. these niodes propagate with a propagation

PERFECTLY
CONDUCTING constant given by the dimensions of that section. The mode

SECTION I WALLS conversion due to the small discontinuity between two
ywaveguide sections is ignored. From the time-domain result,

obtained fron the swept frequency measurement in the 8- 12-
(;tz hand. the multiple interactions between the open end aid
the terination are dcteiincd to be sw;ill ,oih i0 K'
neglecLted herc. Since the modal reflection IIloi the olcii cnd

(whi;,h I,, lirmed t,\ h:ilf-planc,, is exptccl to K. MuchL I
stronger than the mlodl rellection anti Ctlplqlnt ou li, the join
btlween the two sections which torios .1 ', ' \kith A-edge

SECTION 13 angle vcr', losc to I811)  . the tet.,: lg ilit ot lh'e onltiple
Fig 12 rhe geomelr/ ot the cailt\ nodcl llltt I ,Ic'ItI ]B .o th IS .i I .oo'l I\ , , 'CI\ %cak

1 dR 'htunCe C -I g\ 1I)s's lor l l i h .. , , Ais*1i ('d to I
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Fig. 15. Radar ,;ross section pattern due to only the front end rim of the
z- I 

t  cavity structure at f = 9.98 GHz, E' = 4 E', 4 = 90" plane.:msue;__cauat.

E 00 30 m-- C

-t50

wy

I~

1 -0 -601l z

0 30 60 90

(Dn 0 Z TE (

Fig. 1. Radar cross section pattern due to only the front end rim of the

cavity structure at f = 9.98 GHz, P = E', 0 = 0" plane.
measured: m u --: calculated. d...____

00

model the f'nite conductivity of the cavity model used in the -Imeasurements. The measured and calculated RCS patterns at -t,'

I 10 GHz are shown in Figs. 16 and 18 for the scans in b = 0"

I< I_ __ca_ __01

and 0 900 planes. The agreement between the measured
and calculated results is poorer in the b = 90" plane where the ____________________

sectoral waveguide modes are excited for which the modal a 30. ..

0 O 30. 60. 90.

rays bounce from the tapered walls. The approximation to the ' THET (DEG)
propagation constant in the tapered waveguide gets worse Fig. 16.. Raar cross section pattern of the cavity structure at f 10.0
especially for higher order modes. Also, in Figs. 17 and 19, OHz, '°= =, 0 plane. : measured;------: calculated.

thc numerical calculations are compared by including the

contributions of all modes versus only three selected modes.

The modal ray directions of these three modes are closest to few more modes. Comparable accuracy is obtained at 8 and 12

t0 h e shttnrin diecio. As ained eale slctn8~ n for othe polarizations.

I tonly three modes is a weaker approximation in the = 90* Since this new selective modal scheme proved to be so

plane than = 00 plane, because of the effect ofxte taper; the valuable in the principal plane; namely, ) = 0 and = 90*

approximation can. fctoursea be improved by including just a planes, it is next applied to = 45" plane to ascertain its
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C;t

m° Z

U).
_.____

-' I

--L

!0 I0- 0 0

0 . 3. 60 0 30. 60. 90.

THEIR (DEG) THII:: DG
Fig. 17. Radar cross section pattern of the cavity struicture at!f = I00 Fig. 19. Calculated RCS pattern corresponding to Fig. 18. --- : all modes

GHZ, £" = iE, O" plane. :all modes are included; xAXx:oy are included; xxxx: only three modes are included.
three modes are included. i

o IC3

C;

121Lii

x,-_, - I

o I 0"

cr1

___

so. 30. 60. 90.. . .. . . .) THETR OEG)

THET iEG) Fig. 20. Radar cross section pattern of the cavity structure at f 10.00
GHz, " = 0 p 4allplane. al1 modes are included; dsr (86TE.I

Fig 18. Radar cross section pattern at! 10.01 GHz, £" 
= E', = 90 66 TM modes); xxxx: only 18 modes are included (9 TE 9 TM).

plane. measured; calculated.

modes as shown in cach figure. Note that more modes arei

efficiency when the incident plane-wave direction is not needed in this general case as indicated by the results shown inm
aligned with the structural symmetry. The aspect angle scan is Fig. 22 where the 6-mode result is compared with the one
calculated in the O = 45" plane for both the 0 and $ polarized including 152 modes. Even so it is clear that one can use far E

yI

incident fields. The results are shown in Figs. 20 and 21. In fewer modes than the complete set of all the propagating

this case, the 18 preselected modes are compared with the 152 modes. I
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cavities. The procedure is to select and include in the analysisI ,only those modes whose modal ray directions are closest to the
incoming plane-wave illumination direction in the coupling

CD C; -problem. Analogously, in the radiation problem only those
modes whose modal ray directions are closest to the observa-

z* tion direction are selected. The approach is illustrated on
Z uniform waveguides such as parallel-plate, rectangular, and

circular geometries as well as a nonuniform sectoral wave-

' guide. In the case of uniform waveguides, the incident and
L"U reflection shadow boundary directions of modal rays shrink

into a single direction which results in a sharper modal
X radiation beam. Generally, nonuniform waveguides require

___ isomewhat more modes to be included in the analysis as
U 'compared to the uniform case because of the existence of
cc ,nonvanishing angular separation between the incident and

reflection shadow boundary directions due to the taper. The
usual modal analysis which includes all the propagating modes

becomes cumbersome and inefficient, and where the existing
rigorous and exact solutions are difficult to apply. Also, the
procedure can be applied to the waveguide cavities formed by

' 0. 30. 60. 90. different waveguide sections. The discontinuities inside the
Fig. 21. Radar cross section pattern of the cavity structure atf = 10.00

GHz, El = E'% 0 = 45o plane. - : all 152 modes are included (86 TE, ing. The multiple scattering effects can be taken into account
66 TM modes); xxxx: only 18 modes are included (9 TE, 9 TM). using a GSMT approach. For backscattering problems, the

interior cavity radiation contribution to the scattered field is
still mainly dictated by the modes most strongly coupled into

S-the waveguide. For bistatic scattering, the modes coupled
- I -, most strongly into the waveguide are those whose modal ray

in,. _ i , angles are close to the angle of incidence; whereas, the modes
Cmo which radiate most strongly from the interior cavity are those

whose modal ray angles are close to the bistatic scattering
aspect. Only in those special situations where the intermodal
coupling at some interior termination or discontinuity is such
that the reflection of the modes whose modal ray angles are

U close to the monostatic (bistatic) scattering aspect is very
LUjUweak, then the interior cavity contribution to the scattered field

from the other modes which are strongly excited by the
0 'discontinuity could become significant in the monostatic
cc (bistatic) scattering direction, and hence their effect should be

included.

M APPENDIX

The Kirchhoff-based aperture integration approximation
together with the Ufimtsev corrections for the far-zone modal
radiation from the open-ended parallel-plate, rectangular and
circular waveguides are given below. The waveguide geome-

t. 30. 60. 90. tries are depicted in Fig. 1. The normalized modal fields
TH ETA IDE G propagate in + z-direction in all cases. The Kirchhoff approxi-

Fig. 22. Radar cross section pattern of the cavity structure atf = 10.00 mation to the radiated field is denoted by the subscript "k-
GHz, E" = OE', € = 45" plane. - all 152 modes are included (86 TE,
66 TM modes), xxxx: only 6 modes are included (3 TE, 3 TM). and the Ufimtsev correction is shown by the subscript "u."

. CA. The Parallel-Plate Waveguide
IV. CONCLUSION The nth modal fields can be generated from the y-

It is shown here that an equivalent ray-optical representation component of the fields of that nth mode which is given by
of waveguide modes in terms of modal rays has an important fir)
implication which may be utilized to efficiently analyze the E,= -N, sin - e e ffnz, for TE modes (7)
far-zone EM scattering by large open-ended waveguide a
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nr X) where Du are the soft and hard Ufimtsev diffraction coeffi-H, N, Yn cos eJ,, for TM modes (8) h
Sa secients and in this case are the same as those obtained by

where subtracting the physical optics diffraction coefficients from the
/ r / 2) 111 GTD diffraction coefficients for the case of a half-plane

On = k2 -  (9) illuminated by a plane wave; namely,

2 .~ 0

= (10) 2er/4 sin - cos - sin -
(oa Y)1/ 2  D(, ')= _ 2e-2 (19)1

n .n[ for n=0 cos ,+cos V cOs
for n=O 2)

where the angle of incidence (0') and diffraction (05) are as

0o shown in Fig. 23. The 0' and 0& in the above expressions of I
o- , for TE modes (17) and (18) are measured from the interior of the waveguide

(12) for both half-planes.

Yo - , for TM modes. B. The Rectangular Waveguide

The nmth modal fields of the rectangular waveguide can be

The total far-zone radiated field is given by obtained from the z-component of the fields of that nmth mode
which is given by

E=Ek+Eu (13) ( n) 2 l'y2

where the Kichhoff-based Al approximation is given by H, = Nnm Ym Ja) n b

i(
Ek=Y 8i 8,xrkp ( o 7  Cos Cos - eJOrnmz (20)

[A -(- l)A - ]e - j ( -(a2) sin 0), for TE modes X b

for the TE modes and
(14) -

Nk ( Y) _I/ + L Con, n ( f i ) ( r)
N/8kp 1YoS 0) A-nm

[A + +(- 1)A e -jk(p-(a/2) sin ) ,  for TM modes sin xsinr e - / mz (21)
(15)

in which for the TM modes. I
The total far-zone radiated field is given by

[kal flT\
sin - sin -k± _ ) R=e +E (22)

A sin ± ka (16) where EO E9 + E, (22)
lT

sin 0±+ - E = Ek+ EOU (23)

ka
and

The Ufimtsev edge current contribution is given by E,= Ek + E,. (24)

Nn e-r/2[D"(,, r+O)-(- )n The contribution from the Al approximation is given by [151
jfl+mNnm e -krI

e-ikp E84 = - euk/ 2)(a cos ob sin 0) sin 0

D ( /4, w-O)e-kaSe~1I - , for TE modes 4Tkab r

(17) 
UCOS ( 1+-- o Cos0

N~ Y,,

2 n Y[Du(O,,, i• +0) +(1)(A ++(-)"A -[B+-(-I) mB_]
e'jkP -]-in 1+ [D"(Mn Cos+( I)0

D"(0, ir-0)e - j' a li" 0] Y-°- i - oS
%(• , -n , for TM modes Yo

( A+-(-l)nA-[B,+(-lI)m B_1 (25)
(18)
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INCIDENT and 4o,, is as in (1I). Likewise, the contributions to the radiatedDIFFRACTED RAY
RA RAY field from the equivalent Ufimtsev edge currents arc given by

PERFECTLY CONDUCTING [151
H A L F P L A N E --5 1

I --V- ©1 e - r

Eou - Nnm e (ikl2Xa cs bsin ) sin 0
Fig. 23. Angle of incidence ( ') and diffraction ( ') for the half-plane go 8 jk S b -(jk/2 sb sin,0 sin

geometry. j jl) sn6sn4and • 0 ~ ~~ [e-(k/bsi0sn

dsin 0 0 sin Oh

= .. - .. e -jkr (Jk/2)(a cos b sin ) sin - ( -- )metk/2)b snsin 0

-47rkab r

u sin (cos 0 + nY D

S[AY +(-1).A[B. -(-I) m B_ 
- D(,, )v(A 1)-(-)A ) sin4c

-V Cos Cos O+ Y. + [e - (jk/2)a sin 0 cos 0

yo) sin )3o, sin 3.

[A , - (-I)A -I[B, + ( - I)'"B_] (26) - leuk/ 2 ainOcosol

in which D(, + 1'B- ) cos 0 sin

A~=sin, [ (sin 0 cos (27)- + Dunm , 0 4)u(B - 1)mB)cosj (34)A _ 2 - (27) Y

fir
sin 0 cos ±- and
[?\a I e/ -lj -k--re-[kb/ . -] Nm -- e (j k/ 2) a cos b sin 0) sin

- s in 0 sin 8rjk kabr

B, 2 e- (jk/2)b=sinm0(sin2)"

sin 0 sin 0 ± - sin 3oh sin /
kb

i
4

2 °m n )2+(--')2]] -,/1 I)me(Jk/2)bsin0sin 0

ND* (Oh, O )u(A++(-1)"A 
)sin

~3m 0  n , r -/ (29 )2, Y.ik2bsns
k2m2_ _ _ (30) +l0hr \ Y)v(A+-(-1)'A )cos0cos q]

Yo- , for TE modes sn[e (jk/2)as in 0 cos ,k f o sin 0 sin , [

Ynm k (31)

Yo - for TM modes -( - l)e(jl/2)asin 0cos

0D(1o Mr)v(B. +- 1)'B ) cos 0

l 1 '  for TE modes

u= (32) +-- D"(0., #')u(B, -(- l)"B ) cos 0 sinnir Yo h
for TM modes

a

n x where u, v, A_, B, are defined as before, and Du is given in
'or TE modes (19), and A

V{= m(33) fo 
I/k-, for TM modes Cos 0;, =i o (36)
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Cos C -cos ( The far-zone radiated electric field EP can be written as

isin 0, (38) = [E( -sin no +E cos no ekr (50)

sinf [I - (n /ka) 2 J" (38) Cos no sin no )] r

sin Oh = (1 - sin2 0 Cos, 46)" (39) where Ee and E$ can be further separated as

0 nm/k
cos sin 0 (40) E8 = Eft + Eo. (51)

cos 0
cos s= (41) Ea,=En+EU. (52)

sin 0 = [1 - (m /kb) 2 ] I/2 (42) The contribution from the Kirchhoff-based AI approximation
becomes [16]

sin I =I[ -sin 2 0 sin 2  1 i/2 . (43) 1 I 0 Cos 6"m J ,J (k sinG)

C. The Circular Waveguide Eek=j~kZoNmn 2 sin 0

The nmth modal fields of the circular waveguide can be (53)
obtained from the z-component of the fields of that modewhih i gvenbysin 5,nm,
which is given by E~k=jnkZoN.mPm 2(cos snm-COS 0) Jn(Pm)J, (ka sin 0)

2 j"(nP Cos no eJs ,,n-Co 0

Hz =jNm J ) sin no (54)

for the TE modes (44) for the TE modes, and
and

(p l_.) 2 _(P ._P sin n, ] EJ( =jnkN nmP. 2 Osin j (p n)Jn(ka sin 0)

Ez =j N.c a _ a Cosno 2(cos nme--cos 0) J

for the TM modes. (45) (55)

In (44) and (45), J,,(x) is the Bessel function of order n and Ek = 0 (56)
J' (x) is its derivative with respect to the argument x. The for the TM modes. In (53)(55), '5m is the modal ray angle

eigenvalues Pnm and p '.,. are the mA root of the equatioas and is given by

J ( x)= 0 (46) n =COS-' (0nm/k). (57)
andI

The contribution from the equivalent Ufimtsev edge cur-
J,(x)=0 (47) rents can be approximated in the following form [16]:

respectively. The expressions for the propagation constants I
nm are E. =j"ZoNnmnf(B, 6n)Jn(Pm)

2 - for TE modes [I"m sin J, (ka sin I
., Ca (48)

pnm COS ]VPm2, kan sisin0) (8

a for TM modes. -kp' sin - J(ka sin0) (58)

The normalization constants are given by E, =j1ZoNnmflf(0, 6-n)Jn(Pnm)

{kZO 2 '  forTE modes kP'm sin (-.) J, (ka sin 0)

N ,, =o( Ps) 
I 

, 
2

for TM modes _n 2 O3m sin (0) Cos0 'J(ka sin 0),P'MJ"' (p,)-_ o _,eo ka sin O

(49) J n(ka sin _ i [ (59)

with co, as in (11). kasinG I
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ACKNOWLEDGMENT

Ayhan Altinta received the B.S. and M.S. degrees
The authors wish to thank Dr. C. W. Chuang and Dr. A. K. in from the Middle East Technical University,

Dominek of The Ohio State University, ElectroScience Labo- Ankara, Turkey in 1,979 and 1981, respectively,
ratory for their interest and help in this work. The useful and the Ph.D. degree in from The Ohio State

University, Columbus, in 1986, all in electrical
comments and suggestions by the reviewers are greatly engineering.
appreciated. From 1981 to 1986, he was a graduate researchassociate with ElectroScience Laboratory, the De-

REFERENCES partment of Electrical Enginering, The Ohio State

IlI P. H. Pathak and A. Altinta~i, "An efficient approach for analyzing the University, and from March 1986 to February 1987
p..ah a AA ,"nef a ra a t h e. He was a he continued to work there as a post-doctoralEM coupling into large open-ended waveguide cavities," presented at researcher. He was a post-doctoral researcher in the Department of Applied

URSI North Am. Radio Sci. Meet., Vancouver. Canada, June 1985. Mathematics at the Australian National University, Canberra, Australia, until
[2] L. Grun and S. W. Lee, "Transmission into staggered parallel-plate January 1988, and is now at the Bilkent University, Ankara. Turkey. His

waveguides," IEEE Trans. Antennas Propagat., vol. AP-30, no. 1, current interests are in the mathematical modeling and analysis of electromag-
pp. 3543, Jan. 1982. netic radiation and scattering problems using both, high and low frequency

131 H.Y. Yee, L. B. Felsen, and J. B. Keller, "Ray theory of reflection methods.
from the open end of a waveguide," SIAM . App. Math., vol. 16, Dr. Altinta4 is a member of Sigma Xi and Phi Kappa Phi.
no. 2, pp. 268-300, 1968.

[4] S. W. Lee, "Ray theory of diffraction by open ended waveguides I.
fields in waveguides," J. Math. Phys., vol. 1l, no. 9, pp. 2830-2850, Prabhakr H. Pathak (M'76-SM'81-F'86), for a photograph and biogr; -v
Sept. 1970. please we page 4 of this issue.

151 - , "Ray theory of diffraction by open-ended waveguides, 4.
Applications." J. Math. Phys., vol. 13, no. 5, pp. 656-664, May
1972. Ming-Cheug Usag, for a photograph and biography please see page 286 of

[6] S. W. Lee and J. Boersma, "Ray-optical analysis of fields on shadow the March 1987 issue of this transaction.I
I
I
I



I -AP~ 36 1 7997

* The Relationship Between Tapped Delay-Line and FFT

Processing in Adaptive Arrays

R. T. Compton, Jr.

Rernedfo
IEETASCININATNA N RPGTO

Vo.3.N .1.Jnay18



IEI IRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 36, NO. I. JANUARY 1988 15

1 The Relationship Between Tapped Delay-Line and
FFT Processing in Adaptive Arrays

R. T. COMPTON, JR., FELLOW, IEEE

N .4bstract-The use of fast Fourier transform (FFT) processing behind 20
the elements in adaptive arrays is often considered as a means of B = 0 0.02
improving the nulling bandwidth of such arrays. However, it is shown 0
here that the output signal-to-interference-plus-noise ratio (SINR) ob- S N - "
tained from an adaptive array with FFT's behind the elements is identical SIN R 0. 5
to that of an equivalent adaptive array with lapped delay-line processing. (dB) 0.2
The equialent lapped delay-line array has the same number of taps in I
each dela -line as the number of lime samples in the FFT's, and has a 40

delay bet'ween taps equal to the delay between samples in the FFT's. -90 0 90

Thus, while the bandwidth performance of an adaptive array can be 8i ( DEG)
improved by using lime delayed samples of each element signal, no
further improvement results from taking FFT's of these sampled signals. Fig. I. SINR versus 0,: two-element array, one weight per element, 6,,

The same bandwidth performance is obtained by simply weighting and 0*. SNR = 0 dB. INR = 40 dB.

combining the time domain samples directly.

Let us compare the performance obtained with each of these

approaches.
1. INTRODUCTION First, suppose we add more elemnents to the array. Fig. 2

SA N IMPORTANT PROBLEM with adaptive arrays [1]. shows the SINR for arrays with three, five, ten, or twenty
[21 is that their performance deteriorates with elements, instead of two as in Figs. 1. (Each array is a linear

interference bandwidth. The wider the bandwidth of an array with half-wavelength spacing between elements. All
interference signal, the more difficult it is for an adaptive array other parameters are the same as in Fig. 1.) For each array, the
to null it 131-[71. SINR is shown for B = 0 and B = 0.2. As may be seen by

Fig. I illustrates this problem. It shows the output signal-to- comparing Figs. I and 2, adding elements does improve the
interference-plus-noise ratio (SINR) achieved by a two ele- SINR. However, it is interesting that no matter how many
ment adaptive array when an interference signal arrives from elements are used, there is always a region for 0, near Od where
angle 0, measured from broadside. The figure is calculated for the SINR for B = 0.2 is poorer than for B = 0.
two isotropic elements a half-wavelength apart, a desired The second way to improve bandwidth performance is to
signal with 0 dB signal-to-noise ratio (SNR) per element use a tapped delay-line behind each element. (For Figs. I and
arriving from broadside (Od 0i), and interference with a 40 2, a single complex weight was assumed behind each
dB interfejence-to-noise ratio (INR) per element. The SINR is element.) Fig. 3 shows a two-elemene rray with a two-tap
shown for several values of relatie bandwidth B, the ratio of delay line behind each element. Fig. 4 snows the output SINR
the absolute bandwidth to the center frequency. As may be versus O, achieved by this array for B -- 0.2 when each delay
seen, for B = 0.02 the output SINR has dropped about 3 dB is a quarter wavelength. (The other parameters are the same as
below its value for B = 0. Larger bandwidths cause in Fig. I.) Comparing Fig. 4 with Fig. I shows that the delay
increasingly more degradation, lines have fully overcome the bandwidth degradation. The

When the bandwidth performance of an adaptive array is performance for B = 0.2 in Fig. 4 is just as good as that for B
inadequate, three methods exist for improving its perform- = 0 in Fig. 1.
ance: A third method for improving bandwidth performance is to

I) using more elements in the array, use an FFT behind each element of the array, with a separate
2) using tapped elay-ts hin d the e , aweight on each frequency bin. This approach is shown in Fig.
2) using tapped delay-lines behind the elements, and 5. At the output of each element, and A/D converter takes

ings osamples of the received signal. When K samples are available

from each element, these samples are transformed with an
FFT. The FFT produces K frequency domain samples of each

Manuscript received October 27, 1986: revised May 15. 1987. This work

sa, ,,upnm)rted in parl by Naval Air Systems Command under Contract element output. Each frequency domain sample is multiplied
N(XX)19-85-C-O1 19 and in part by the Joint Services Electronics Program by a weight and then added to the corresponding frequency
under Contract NiKEJ14-78-C-(X)49. samples from other elements. Finally, the inverse FFT (IFFT)

The author is with the ElectroScience taboratory. The Ohio State
University. Columbus. OH 43212. is taken of the frequency domain samples to obtain the time-

IEEE Log Number 8717997. domain array output samples.

0018-926X/88/0100-0015$01.00 © 1988 IEEEI
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20 DESIRED
8=0. SIGNAL DESIRED

SINR -

SdB) B =0.2 / NTERFERENCE

-4J /..
-90 0 90

19i DEG) Xzlt) x Mt
(a) - ,

20 B. 02 -- T x To

0 0 .
B ---- / W22 Wz

SINR B0(T o2'W-Zo
(dB)

-40 S t)
-90 0 90 Fig. 3. A two-element array with two-tap delay lines.

91 (DEG) 3
(b) 20

SINR IB= (dB)

SINR -I
(dB) --

0

-40 - _ - I -90 0 90

-90 0 90 0. (DEGREES)
Fig. 4. SINR versus 6,: two-element array, two-taps per element, Od = 0,

(DEG) FSNR = 0 dB. INR 40 dB.
(c)

ELEMENT)

207 SAMPLES

B=o INPUT BUFFER

SSAMPLING 1 ;12 " 1K

dB) - T$ [FFT

71 12 V
1

- 40 .

-90 9
(DEG)ELEMENT M L

( I OUTPUT

Fig. 2 SIN, Lrsus 0,: One weight per element. 0
d = 0. SINR = 0 dB, A/D INPUT BUFFER F SAMPLES

INR - 40 dB. (a) Three elements. (b) Five elements, (C) Ten elements. (d) Z~ /- - T

Twenty elements. F

The use of FFT's behind the elements has a certain intuitive 37M

appeal as a method of improving array bandwidth perform- _* I
ance. In effect, the FFT divides the signal bandwidth into

smaller subbands. (For this reason, this technique is some- Fig. 5. An array with FFT processing.

times called frequency subbanding.) With a separate weight

on each frequency bin, the array can compensate differently in frequency response equal to the signal bandwidth. The SINR is

each frequency subband. shown for K = two, four, eight and sixteen samples in the

Unfortunately, calculations of array output SINR for FFT FFT's. As may be seen, the performance does improve with

processing often show poorer performance than that obtained K, but even for K = 16 it is not as good as the performance for

with tapped delay lines. Fig. 6 shows a typical set of results. it tapped delay lines with only two taps, as seen in Fig. 3. Thus,

shows the output SINR from the same two-element array as in in spite of the intuitive appeal of FFT's, their performance can

Fig. I. but with a K-point FFT behind each element. The be disappointing. I
curves are computed for the same bandwidth, B = 0.2, and The present study was done in an effort to understand the

for a sampling interval that makes one period of the FFT relationship between tapped delay-line and FFT processing in I1
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21-K =16 o T To T,0T T,

0- N MI M( 71K

K L4
"

4

SIN . 
SN d.1N 0B

-40__ __ __ __ __ __

-90 090 5: f
8~ (DEG)WEIGHT3it t SINR %er U 0.: mwi-elenieni array . A-point FFTS. B 0.2, 0a SYSCOTROL

0'. SNR = 0 dB. IN'R = 40 dB. SSE

adaptive arrays. The study was motivated by the fact that there ARRAY

seemed to be no apparent reason why FFT performance should PROCESSOR

be poorer than tapped delay-line performance. Fig. 7. An M-element array.

What wc shall show is that inserting an FFT between the
delay-line taps and the weights in an adaptive array in fact has itself, with no delay. Let .,,lA(t) denote the (ana!ytic) signal
no effect on the output SINR. The performance differences from element m at tap k. Then , (t) is the signal received on
noted above between the two approaches are simply due to the element n, and
use of different time delays between samples or different i(t) I(t- (k- II T). 0)
numbers of samples in each case. When a tapped delay-line
array and an FFT array use the same time between samples We suppose the i,, k(t) are used as inputs to an LMS adaptive
and the same number of samples, their performance is array processor [1]. This processor multiplies each imk(t) by a
identical. complex weight W,,,k and then adds the weighted signals to

We proceed as follows. In Section II, we show that inserting produce the array output §k(t), as shown in Fig. 7. The
any linear, invertible transformation between the delay-line processor uses LMS feedback loops [1] or an equivalent
taps and the weights in an adaptive array has no effect on technique [8] to set the weights to their optimal values. These
either the output signal ot the output SINR. We prove this weights maximize SINR at the array output [9].
result L"'- both the least mean square (LMS) array and the For a given set of tap signals ,,k(t), the optimal weights
Applebaum array. (For the Applebaum array, the proof holds may be calculated as follows. Let X,,(t) and W,, (with I < m
only if the steering vector is transformed in the appropriate < M) be column vectors containing the signals and weights at
way.) Then in Section III, we show that using FFT's in an the K taps behind element m.
array simply inserts a linear invertible transformation between
the delay-line ta:. and the weights. Taken together, these Xr(t)= [-m (t), £,, 2 (t), , ,,,(t)] ,  (2)
results ,how that the performance of FFT processing is and
identical to that of tapped delay-line processing. Finally, in
Section IV we consider some related questions: the effect of W. ['.m,, wm2, • Wm] T. (3)
FFT processing on the array weights and the covariance
matrix eigenvalue spread. We also,) discuss how tapped delay- (Superscript T denotes transpose.) We refer to Xi(t) as the
line and FFT parameters are usually chosen, and point out how element signal vector and to W,, as the element weight vector.
these choices result in the performance differences between Then let X(t) and W be the total signal and weight vectors for
the two methods noted above. Section V contains our the entire array,

conclusions. X 1 (t)

If. A SIIPI± PROPERTY OF ADAPTIVE ARRAYS X 2(t)

In this section we show that inserting an arbitrary invertible X(t) = (4)
linear transformation between the delay line taps and the
weights in an adaptive array has no effect on either the output
signal or the output SINR. We prove this result for LMS X. (0
arrays in Section Il-A and tor Applebaum arrays in Section II- ant
B. For Applebaum arrays, the steering vector must be and

transtormed in the proper way along with the signals for the Wtheorem to hold. -
A. The LMS Array

Consider an adaptive array with M elements, as shown in W (5)

Fig. 7. Assume each element is followed by a tapped delay-
line with K taps and a delay of T seconds between taps. The
output of the first tap behind each element is the element signal WMI
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where we use a partitioned vector notation. The optimal T,

weight vector in the array is then given by [11, [21 T T T. To
W = ,)A 'S, (6) MI "- MK II 12 n K

where ,P, is the signal covariance matrix, I TRANSFORMATION T

(P, = EIX*X T1,(7 mi7M71

and S, is the reference correlation vector,

S, =E[X*f(t)]. (8)

In these equations, the asterisk denotes complex conjugate and
F(t) is the reference signal [11. We assume the signals -,mk(t) as
well as F(t) are all jointly stationary random processes, so , WEIGHT" ----- CONTROL

and S, do not depend on t. With the weight vector Wgiven by SYSTEM

(6), the array output signal is

'(t) = X r(t) W= X (t)4 Sx. (9) ARRAY
Now consider the following alternative situation. Suppose s't PROCESSOR

that, instead of using the signals .,k(t) as inputs to the Fig. 8. A tapped delay-line array with transformation T.

processor, we first combine them in some manner to produce a
new set of signals)r,,,k(t), where I :s m s Mand 1 k - K. |Specifically, suppose Y,, is the K-component vector ?(t) is the same reference signal as in (8). The array output

signal for this case §,(t) is
Ym [. 1mi (), .Ym 2 (t), , Y m(t)l , (10) g (t)= y T(t)U = y (t) (p IS. (17)

and Y is the MK-component vector, Now it is easy to show that if T is invertible .(t) and .,(t)

Y, -are in fact identical signals. Substituting (12) into (15) and
- - (16), and using (7) and (8), we findY2

Y) = . (II) 'I, y*(t) yT(t)] =E[T*X*(t)XT(t)TT
] = T*$T,

(18)

LYM 
and

Then let us assume that S,=E[ Y*()f(t)I =E[T*X*(t)F(t)I = T*S.. (19)

Y(t)= TX(t), (12) If T is invertible (i.e.. nonsingular), Sy(t) in (17) reduces to

where T is an M K x M K matrix of constants. Thus, each §Y.(t) = y r(t) IS "

Y,k(t) is a linear combination of the m k(t). Now let us use the = X (t) TT[ T*iF. TT- I T*S
Y,,A (t) as inputs to the same LMS processor as before. Fig. 8 =X(t),p SI
shows the new arrangement with transformation Tbetween the "
X,,,k (t) and the ,,,k(t). For this case, we denote the mkth array = s(t). (20)
weight by U,,k, to distinguish it from WinA in Fig. 7.With the signals 9,,,k(t) as inputs, the LMS processor will Furthermore, the output SINR is the same for the two

With t weights given by arrays. Substituting (18) and (19) into (13) shows that theproduce optimal wweight vectors U and W are related by

U=F IS, (13) U=[T*F T
] T*S,

where U is the new weight vector. =[TT 14) i-S,
U = u 1 1 , 1 4 , ' " * , 1 1 2 , U K J I , ( 1 4 ) = T T ) - . ( 2 1 )

(b, is the covariance matrix associated with the signals ,flk(t),

Consider, for example, the output desired signal. Suppose
, = El Y*(t) yT(t), (15) Xd(t) is the desired signal part of signal vector X(t) and Y(t)

and S, is the reference correlation veLtor for the signals ,,, (), is the desired signal part of Y(t). Then

S, = E[ Y*(tf(t)1. (16) Yd(t) = TXd(f). (22) I
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The array output desired signal in Fig. 7 is Thus, inserting the transformation Tbtween the elements and
the processor has no effect on the output signal (or, as with the

g~d(t) XS(t) W, (23) LMS array, on the output SINR), if the steering vector is

whereas the output desired signal in Fig. 8 is transformed according to (32).
We have now shown that placing an invertible transforma-

d ydu. (24) tion T between the delay-line taps and the adaptive processor
has no effect on the output signal or the output SINR. This

However, using (21) and (22) in (24) gives result holds for the LMS array and also for the Applebaum

P) *TXd()] T[ TTJ - I W= d(t ) .  (25) array if the steering vector is properly transformed.
It is important to note what this result says about array

Thus, the arrays in Figs. 7 and 8 have identical output desired bandwidth performance. Since the transformation T has no
signals, and hence identical output desired signal powers. A effect on the output signal or SINR of an array, it also can
similar argument shows that the output interference and have no effect on the bandwidth performance of an array.
thermal noise powers are also identical for the two arrays. In other words, the theorem applies no matter what signals are
From this it follows that the output SINR is the same in Figs. 7 present in the array. Whatever the signal bandwidths, the array
and 8. SINR will be the same with or without the transformation T.

Thus, inserting a linear transformation T between the Thus, there is no invertible transformation T that one can
elements and the processor, as in Fig. 8, has no effect on the insert between the delay-line taps and the weights that will
output signal or the output SINR. The only requirement for improve the bandwidth performance.
this result to hold is that the transformation be invertible.

III. AN ARRAY WITH FFT PROCESSING

B. The Applebaum Array Now consider an array with FFT processing. Such an array

Now suppose the array processor in Fig. 7 uses Applebaum was shown in Fig. 5. An A/D converter behind each element
control loops [21 or an equivalent technique [81 to set the samples the signal from that element every T, s. The samples
weights wink. Applebaum control loops use a steering vector from each element are collected in the input buffer of a K-
instead of a reference signal to point the array beam at the point FFT [10]. When K samples have been stored, the FFT is
desired signal. With Applebaum loops, the steady-state weight taken. This process generates K frequency domain samples

vector in the array will be [21 from each element. These samples are multiplied by weights
= Vand then added in corresponding frequency bins to theI W r-FV (26) weighted samples from other elements. The result is a set of K

where p is an arbitrary (nonzero) gain constant and V is the frequency domain samples of the array output. Finally, the

steering vector. The array output signal will be inverse FFT is taken to obtain K time domain samples of the
array output. This entire process is repeated every K samples.g§(t)= XrW=XT(t)x IV. (27) The process described above is called block processing,

w ssince the input time samples are hand!ed in blocks of K
Now suppose a transformation as ing.bet samples. After each block of K input samples is collected, a

signals .,,,(t) and the Applebaum processor, as in Fig. 8. Let block of K array output time samples is generated by the
the processor now have a new steering vector Q. The steady- inverse FFT. Each FFT cycle involves a block of K entirely
state weight vector in this case is new samples.

U= IA,1- IQ. (28) The FFT processing can also be done in a sliding window
mode. In this case, the FFTs are recomputed after each new

If (18) is substituted for 4,,, (28) becomes time sample, using always the most recent K time samples in
each FFT input buffer. As we shall see below, with this

U= [ TTI [T*] Q, (29) approach it is not necessary to do the inverse FFT to obtain the

so the array output signal is time domain array output. The time domain output is simply
the sum of the weighted-frequency domain samples.

g,(t)- yT(t)U Block processing has the advantage over sliding window
= fLX r(t) Tr[ T] I - I I T*] i Q processing that the FFT's need be computed only once per

r block, instead of once per sample. However, sliding window
=Ixr(t)4 I[T*] IQ. (30) processing has the advantage that no inverse FFT is required

to obtain the array output. In this section we shall consider
Comparing (30) with (27) shows that .,(t) and g(t) will be the both forms of processing.
same if We first define notation for the sampled signals. To make

the notation here consistent with that in Section II, we denote
V= T 'Q, (31) the signal on the mth element of the array by R,, Q). Let us

i.e.. if concentrate on a particular set of K contiguous samples in each
FFT input buffer in Fig. 5. Suppose that. of these K samples,

Q= T* V. (32) the most recent was taken at t = to. Then the latest sample ofU
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fcmi(t) in the mth FFT input buffer is .it(to). The previous then the inverse FFT of the ft, produces the following time
sample in that buffer is 9,,, (to - T), and the earliest sample is samples of §(t), I
9.1i(to - [K - lIT,). If we define the signal ,,,A(t) to be' II

. A,,f,( t),, I(-[k- II T,), (33) § K). (39)

we may write these samples as In a practical array, the factor I/K in (39) may be omitted.
£,m(to) = i,,I (to), This factor is simply a gain constant in the array output signal,

and it has no effect on the output SINR. 3 Hence we assume the
,i(to- T,)=A,2 (to), array output is actually obtained from I

K

, ,(to- lK- I1Ts) = 9.,A (ti). (34) ) E(

Now consider the FFT obtained from these samples. Let the Thus, with block processing, a block of K input samples is
K frequency domain samples produced by the FFT behind used in this manner to produce a block of K array output time
element in be denoted by Yi. Y,2, , YIA. These .2,,, are samples. The entire process is repeated every KT, s, using for
given by2  each cycle an entirely new set of K samples from each

A element.
, = A,,(tI)E(: s(n5 K, (35) If sliding window processing is used, on the other hand, it is

not necessary to perform the IFFT in (40). Note that the most
where recent sample of §(t), g(to), is given by (40) with k = 1.

K

Ex. = e ) (36) g(to) = 1, (to)= A In. (41)
The array processor multiplies each frequencv domain ,

sample ,mn by a complex weight u,,. We assume these Thus (1) is just the sum of the jr. With sliding window
weights are set to their optimum values, which maximize Thusig, t the sam of th at ld wndom
SINR at the array output. (The weights can be controlled with processing, the other samples of e(t) that could be found from
an LMS processor, an Applebaum processor, or any other (40) are not needed, because an entire FFT cycle is performed
equivalent processor.) The weighted samples are then com- fr each new input time sample. Successive samples of the
bined, in one of two ways, to produce the array output. The array output are obtained simpl y prepeating (41) at each
method used to combine the samples depends on whether sample time. Hence the total array processing in this case is as
block processing or sliding window processing is used. shown in Fig. 9. o

If block processing is used, the weighted frequency domain Note that the optimal weights block. in the processor are thesamples from each element are added in corresponding same regardless of whether block processing or slidingI
sampes rom achelemnt re ddedin orreponing window processing is used. The optimal weights maximizefrequency bins. as shown in Fig. 5. This step produces array SINR. defined by

output frequency domain samplesf.f, given by
f Pd

A= , (37) SINR /,+ = , (42)

Then the inverse FFT of the f,, is taken to obtain the time where Pai, P,, and P, are the average desired. interferenci and
Thean theminveseF of the ay istp. t denot the ty thermal noise powers at the array output, respectivey. If
domain samples of the array output. If we denote the array Sd(tJ), g,(t,) and §,(t,) denote the desired, interferenqt and
output signal by &(t). and its samples by g5 (t). thermal noise signals at the array output at a particular .~imple

Sk ( = (to - I k - I T), 15 k5 K, (38) time ti. then these powers are given by

Equation 133) has the same frm ,as (1) of Section 11. %kith T, replaced by Pd= E119d(tj)l 2], (43)

It is common in the FFT literature 1101 to denote the time domain samples = Ef I )i 1, (44)
hy x. x, - - ,XA and the frequency domain samples by X. X, •X,
In this case the FFT is usuall written and

x , x, t:', o <_ n s h K . P ,, = E l ( tj1 (4 5)

Because we assume the signals 9,,A (t) are stationary. the array
and the 1:F1T i, output time samples are also stationary. Hence each of the

X, O-ksK- I.
K X An t.MS processor adjusts the %%eights so the airay output matches the

reference signal. Omitting the lactior I K ust results in %eiglhts smaller bs a
Hocver it, make our F-FT notation correspond to th,it in Sectlion 11, we factor IiK than the) would have been, For an Applebaum processor. thc
instead vrite the FFT as in f35t and allow the indices k, n to ,ary from I It K. optimal weights contain an arbitrary gain constant anyway, such as it in 1261
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sufice tonot tht te arayoutut orsliding window
processing in (41) is the same as the array output for block
processing in (40) when k = 1. Hence the weights that -maximize the SINR at the k = 1 sample for block processing , --- ,, .._,also maximize if for sliding window processing. LIET

Since the optimal weights are same for either type of Fi. 10. An t t
S prcessing, and since these weights produce the same output
SINR in either case v we shall simplify the discussion below by T
considering only sliding window processing.

Now let us consider the relationship between FFT process-
ing and tapped delay-line processing. First, we note that (33)
for the time samples in the FFT processor has the same form

as (I) for the signals in a tapped delay-line processor, exceptnthat the intertap delay T i ( ) is replaced by the sampling forA eRMAT ION

time T, in (33). Hence, tor mathematical purposes, we may T
view in ethe s he FFT processor as having been Fig. II. A simpler equivalent tapped delay-line array.
obtained from tapped delay-lines as shown in Fig. 10. If the

U delay between taps in Fig. 10 is T5, ar'd if every tap is sampled eliminating the A/D converters in Fig. 10 and instead putting asimultaneously at t = to. the same set of K samples will be single A/D converter at the array output as in Fig. I1. Theobtained from the tapped delay-lines as from a single A/D array is then an analog adaptive array with tapped delay-lines,
converter behind each element as in Fig. 9. followed by an A/D converter at the array output. The A/D

Second, we note that the frequency domain samples i,,h,, are converter in Fig. 11 serves only to discretize the array output,
each a linear combination of the input samples wil(tl). The but has no effect on the output SINR of the array.

linear combination is just the FFT in (35). Third, we have The transformation between the ,,k(to) and the Y, in (35)
shown that the array output (for sliding window processing) is may be expressed in matrix form as in Section Ii, of course.
just the sum of the weighted frequency domain samples as in Let Xm(to) be the element signal vector at time to,
(41). Hence, an array with FFT processing is mathematically
equivalent to an array with tapped delay-lines, followed by a X,(to)=11(to), . 2 (0 ), ", ,K(to)]. (46)
linear transformation of the signals, followed by weighting Then X,(t 0) contains the FFT input samples from element m
and summing, as shown in Fig. 10. used in (35). Also, let Y,, be a vector containing the frequency

Moreover, note that the A/D converters at the delay-line domain FFT samples from element m,
taps in Fig. 10 play no fundamental role in the operation of the
array. The same array output samples would be produced by Y lA,,1, ,,2 , YA 1r .  (47)I
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Then Y, and X, are related by is just the inverse FFT in matrix form,

Ym = EXm, (48) E) E0' .. 1..
E0 Ex 1 ... E( K It

where, from (35), E is the matrix 1 E 2  2A I I

E, 1o E ... ( I

EK EK - E .A.. EA E

S(54)
0o.  K -' , , - )(K - 1E .

(49) K

1 -The inverse of T is then just

e -j2v(I/K) ... e-J2w(K - l K) 3
e -j2w(2/K) e -J2v12(K -1VK) . E" 0 01

L e -j2x(K I /K) e --j2,i(K- "/tK) 0 E* 0
T K 7,I ...T - 1 - (55)

If X(to) is the complete signal vector for tle entire array, '

X1 (to)-- -II
L 0 0 Ej

X 2(to) I
X(t 0 ) = - (50) K I

Thus, an array with FFT processing is mathematically
equivalent to a tapped delay-line array with a linear invertible

XM (t0) transformation between the taps and the weights. The equiva-
lent tapped delay-line array has the same number of taps in

and Y is the vector containing all the frequency domain each delay-line as the number of samples in the FFT's, and has
samples, an intertap delay To equal to the sampling time T-. It then I

follows from the theorem in Section 1I that an array with FFT

processing will produce the same output SINR as the corres-
- ponding array with tapped delay-lines. The FFT's can be I

inserted or omitted with no change in performance.
Y - - (51) An important conclusion that follows from this result is that

FFT processing in and of itself does not offer any improve-
- - ment in array bandwidth performance. The same bandwidth
YM performance can be obtained simply by storing K samples of

each element signal and then weighting these samples directly.
then Y and X are related by Including the FFT's between the samples and the weights

merely adds to the computational burden, but does nothing for
Y= TX(t 0), (52) the bandwidth performance.

E J 0 ..- 0 IV. ADDIfIONAL COMMENTS ON FFT PROCESSING U
- 0.. In this section we discuss a few additional points of interest

0 E 0 concerning FFT processing. 3
T = - (53) A. Optimal Weights With and Without FFT Processing

First, we consider how the optimal weights with FFT

processing compare to those with tapped delay-line process- I
0 0 "'" E Jing. Let U and W be the optimal weight vectors with and

without the FFT transtoi wiation T in the array, respectively.
Note that T is a block diagonal matrix. It has this form because Then, from (21). U and W are related by
each FFT uses time samples from only one array element.

T is an invertible matrix, of cours,. The inverse of E in (49) t I T*] W. I
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However, the matrix T in (53) is symmetrical, because E in Now substitute e,, = (l//-K)Tey, (the inverse of (63)) in3 (49) is symmetrical. Hence (56) simplifies to (61) and multiply on the left by T 1. This gives

U= T- W. (57) T- '4 Teyi=Xeyi. (67)

Moreover, U and W may each be expressed in terms of Then replace T I by (I/K)T* and T by TT,

element weight vectors U,, and Wm as in (5). Equation (57) [T*4,Trley =KXiey,. (68)
then reduces to

Um=E- IWm, l_ m<5M. (58) Finally, from (18) note thatIT*4,) Tr = y,(69
Hence the optimal weight vector behind each element with T T (69)

FFT's is just the inverse FFT of the optimal weight vector so (68) is just
without FFT's. Note that because (57) holds, the same array 4) e KX e 1 is KM. (70)
output signal is obtained with or without the FFT's, yv, x, yi ,

Y 7 U= [TXlr[ T I W X W, (59) Equation (70) shows that eyi and KXXi are the ith eigenvector
and eigenvalue of 4,,. Thus, each eigenvalue of 4),y is simply K

as the theorem of Section II requires. times the corresponding eigenvalue of 4),:.
From this it follows that 4,,y and 41, have the same eigenvalue

B r igenvalues spread. (The eigenvalue spread is the ratio of the largest to the

Next, we consider the eigenvalues of the covariance matrix smallest eigenvalue.) Hence typical problems caused by
seen by the adaptive array processor with and without the eigenvalue spread, such as long convergence times, roundoff
FFT's. These eigenvalues are of interest because they control errors in covariance matrix inversions, etc., will be the same
the transient behavior or convergence properties of the with or without the FFT's.
algorithm used to adapt the weights [11]. Without the FFT's,
the signal vector is X and the covariance matrix is C. Weight Dynamic Range

S(6 Now we consider an issue of practical interest: how FFTI4x = E[X*X r]. (60) processing affects the dynamic range of the weights. We may
Suppose 4 , has orthonormal eigenvectors e , and eigenvalues 4  gain insight into this question as follows.
Ix, McClellan and Parks [121 have studied the eigenstructure of

the FFT transformation matrix. From their results, it is easily
4.e., = X,e., I i<KM. (61) shown that the matrix E in (49) has a complete set of

The eigenvectors eig satisfy orthonormal eigenvectors eej, 1 !s j !: K, and that every
eigenvalue Xhr of E has one of the four values /K, -i/-,

et eX = 6,1, 1 <_ i, j < KM (62) +j'/KI, or -jNIK. The multiplicity of each eigenvaue varies
'I J with K, the order of E.

where the superscript dagger denotes conjugate transpose and From the eigenvectors and eigenvalues of E one can obtain
6,, is the Kronecker delta, the eigenvectors and eigenvalues of T in (53) in an obvious

Now define new vectors way. Each eigenvector ej of T will have (M - I)K

components equal to zero and K components consisting of one
e,= /K T-T ex,, 1 !5i<_KM. (63) eigenvector eEjof E. The eigenvalues Xr of Twill be the same

as those of E but with multiplicities M times higher.These e,, also form an orthonormal set. From (63), we have Suppose W is the optimum weight vector without FFr's and

e e, =e /[ U e,. (4) the optimum weight vector with FFT's. Then from (21) we
Yi -J x, have

But because Tis symnietrical (T' - T) and T = (I/K)T*S (see (55)). we have U[lTrlTW= TIW. (71)
e (5 we hThe optimal weight vector W may be expressed in terms of its

IT 'lI= T* =K T, (65) components along each of the eigenvectors of T,

so (64) reduces to W= af er (72)

e,:W =KetIe-
e' e , TT 'e.,

PK where each aj is a scalar constant. Moreover, the matrix T-

= et e, may be written in terms of the eigenvectors er and eigenvalues
r , K Xr of T using the spectral decomposition formula,I =6,, !5< i, j <_ KM. (66) UK I

IP, is a positive definite Hermitian matrix. so it has a complete set of T-'= r-erte• (73)
eigenvectors and its eigenvalues are all real and poVsifiv, X'I
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Substituting (72) and (73) into (71) then gives Suppose the input signal f, (t) is a sinusoid at frequency w,

U 'W "rs er . (74) . (77)

Then, from (33),
We cannot determine the magnitude of the components of U =
exactly without considering specific cases, because some Xr -, k M
are real and some are imaginary. But because JXr1 = vK for
every j, (74) shows that the weights with FFT's will generally For a specific n, the output signal Y,n, may be found by
be smaller than the weights without FFT's by a factor of about substituting (78) into (35),
l/vk. The ratio of the largest to the smallest weight is
approximately the same with or without FFT processing. .,,n = .mk(t)e -j(/rKk - 1)n - 1)

k=J

D. Performance Differences Between Tapped Delay-Line K

and FFT Processing = e -J(k - I)wTs 
+ 

(2r/KJ(n -iN ejwt" (79)

Next, let us consider how the delay parameters are usually k=1 (
chosen in tapped delay-line and FFT processors. In the
introduction we noted that array performance can be poorer This may be written.
for FFT processing than for tapped delay-line processing. Fig. , () = ej t ,  (80) I
6, showing typical results with FFT's, was compared with
Fig. 4 for tapped delay-lines, where H,(w), the nth transfer function, is

However, it is clear from the results of Sections II and III H
that the SINR achieved by an array with FFT's must be ,(o) I
identical to that achieved by the equivalent tapped delay-line K
array. The equivalent tapped delay-line array has the same =Y e-J(M- I)lwTs+(2r/K(N-7- i))

number of taps as the number of samples in the FFT's and has k = I
an intertap delay equal to the FFT sampling interval.

The performance difference noted in the Introduction is due sin S LT+ 21 (n -)
entirely to the fact that typical comparisons have assumed 2 K
different intertap delays or different numbers of taps for the =e-j(K-I)12[wTs+(2T/K)(n-I)I

two types of arrays. For a tapped delay-line processor, the sin - 2wT+- (n- ]
intertap delay is often assumed to be a quarter wavelength at 2 K

the carrier frequency. For an FFT processor, the sampling (81)
time is usually chosen so the period of the FFT frequency
response approximates the signal bandwidth. These two In general, Hk(s) is a periodic function of frequency with
amounts of delay are usually very different. peaks at frequencies

Consider a typical case. First, suppose the signal carrier 21r in -
frequency is u(. The time delay required to produce a 90* ,=.- li- i= , -2, -1, 0, It 2,
phase shift at the carrier frequency (a quarter-wave delay) is TS K

then (82)

T90 = (75) For a given n, the peaks of H (w) occur every 27r/T along the
2w0  frequency axis. For adjacent n, the peaks are separated by 21r/

In general, suppose we have KT. Fig. 12 shows a typical set of H, (w), •, HK(w) over

T= rT0, (76) part of the frequency axis.
In studies of FFT processing, it is common to choose T, so

where r is the number of quarter-wave delays in T0. Although one compiete set of K filter passbands approximately covers

there is actually no fundamental reason to do so, with tapped the signal bandwidth. (This choice seems sensible, since it

delay-line processing it is common 141 to assume 5 r = 1. divides the signal bandwidth into K subbands.) If the signal

Now consider the choice of T, in an FFT processor. We bandwidth is Aw, we set

may view the FFT in (35) as a filter bank. The input to the
filter bank is i,,,(t) and the outputs are ) Y,,,,2, ., Y ,,, . 2=w

One filter produces the output P9, I , another produces the T '

output ,,2. and so forth. Let us consider the transfer function
of each of these filters. or 2w

' it , hown in 171 that for a two-eiemcnt array any choice of r in the range T, = - (84)

0 r - 1 B %ill work lust ds well w
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H~WI weights cubed. As a result. the computational burden in-
creases rapidly with the number of* weights. anti can quickly

n n K-, nzI become prohibitive. However. taking FFT\s tends to reduce
\\4tecreainbtee ape ndtirn f'requcncy sub-

I bands. In the ideal case in which samples in difkl'rent subbands

arc comnpletcly decorrelated. the covariance matrix has a block
I diagonal form and the optimal weights canl hc computed
I separatelk: in) each subband. In this case one need only compute

W! weights for each of' K subbands. so the total number of'I Multiplications is proportional to KAI rather than K'M'. For
2-r K -1 21r lag h omputational savings may more ihan offtset the
_T K - extra burden of taking the EFT' s.

ti: 1 1 The transter tunction, i,', (w). //. A 10In practice the samples in difflerent t'requency subbands are
usuall\ lit c impletelN decorrelated. (The actual decorrelation

HoA e~er. (84) mnaY be rearranged into the formn depends on the signal spectra and the sampling rate.)
However, even w ith imperfect decorrelation. it rnaN still he

wo 4 dvantgeousto ComlpUt, weights in each subband separatelx.
, = 4 =- T9,(85) avnaeu

2, A.o B Although the resulting wecights arc suboptimal. the cornputa-
tional saviiws mnav be us "rth the loss, in SINR. tUsinui FFT's in

~s ereB i th reatie bndwdthof he ignls.the array makes this trade-offt possible. Studies of' this
-1 Loapproach have been made by Berni and Kretschmer [131.

B (86) Dillard 1 141, Gabriel [151. Gerlach 1161 and Brennan and

an ,is Lziven in (75). If*. f'or exaple the signal has a I Dol[1.

and, T , reltiv T,,. ad7 We have shown that the SINR achieved b\ an adaptive arraN

(8) with FFT processing is identical to that achieved by an

Nftc that this choice corresponds to r = 400 in (76). i.e.. to an aptive array with the equivalent tapped dela -line process-

d ntertap dla of 4(X) quartr-wkaves in the equivalent tapped 11g. In the equivalent tapped delay-line processor, the number
dela\ -line arra '~ of* taps in the delay-lines is equal to the number of samples

In IFit-. 4. hich shoo.%, the SINR of' a two-elemnent tapped used in the FFT's. and the delay betwAen laps, is equal to the
-lin arr~ ar tap perand dela\ bemeen samples in the EFT's.

dcirt-ne dla\ eterenc taps Fig. ele. n andc s ote In .Section 11, we showked that inserting, a linear invertiblc
q lNrat\. 0el~ ementara. In i FF1 prc shings the transforittat ion between the delay-line taps orand the k~eights in a
samlplin timec has been selected according to (84). Thus, the tpped delay -line arra has no efkl'ct on the array utu signal

taped ela -lne rra inFie 4 nd he F1 rra inFig 6 or SINR. Whatever changes are Caused in the signals by the
-~-linear t railsformation are compensated Ibr bk corresponding

arenotCq~i~acil. heditlerncein hcr prt'rninceis ucchanges in the weig'hts. Then in Sectiont Ill . e showetd thatto the differcrice hetween T, and T. as well as A.
In an earlier paper 171. the author discussed in detail howk the using FFTs behind each element is rnathemiaticall equivalent

number ol taps andi the amiount of intertap delay affect the to using tapped delay I-lines fol1lowed by a linear transl"ormation
SINR pertlirmanec of a t'mo-elent tapped delay-line array. Theion maif conluio folwsllt.teeulso
In particula r. it was sho~ i there that setting T according to ISectionan Il.wecnirdth ' -cso'FTsolte
I X4) ( i.e.. ,citinL r 4,,B) makes, r too large to obtain optimtal opina Set sI. whe considered nithe efcts of FFT's nd the
SI NR lioni thr arrax . For optimal SINR. r must be in the opt aim a g oei ft ' the ovaiances miai.x en u andthfr.n: P'ct < I 'B. Thus, although it seems, intuitivey dnmcrag i h cihs al\ . wedscussed the

sensihe t .oos T.so hesigal ans~ dthis ivdedint K reasons f'or the perfoirmiance difflerences noted between FF1I s~uhhmgid,. in tact this choice x elds suboptimal SI'NR. Better poesn n apddlyln rcsie
pertorlnance \.kill he obtained if' T, is chosen 50 the FF1 period ret isht FF1prnoncsign a I' tldoes nothesera
I,, at leasl1 touLr timtes the siL'lal bandwidth. The reader is rslsita Fpoesn nado tefde oofrn

ittpro~ivemett arrax handwkidth performance. The samel
rerrd to 171 for further diseCLISsion of this, question. i

bandwvidth performtance %kill be obtained b\ sillplx storing A
LK rIO .1(/('lnt(/ge of1 1--T Processing samples, I'roti each element signal and then %keighting and

combnin thse sanmples directly.It should be pointed out that even though FFT's do not Aobiin the11 -1(AI ~ ~~ipro% c hand%% dth performtance per ,e. they may tieverthelessAcott.il\
bo: tiicll or other rcasons. Foi example. w~hen the sample The author is grateful to Drs. F. F. Kretschmner. Jr. K.
nun ii\ insersec (Silih technique 181 is, used to control the Gerlach, and W. F. Gabriel of'Naval Research Laboratory and

kcivhts. the nlumber of milflipl icat ions required] for each Dr. L. E. Brennan of' Adaptive Sensors Inc. for helpf'ul

"IlUdtI, rprinlt K1' h ubro ugsin nti ok
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* Scattering by an Inhomogeneous Dielectric/Ferrite
Cylinder of Arbitrary Cross-Section

Shape-Oblique Incidence Case
ROBERTO G. ROJAS

.4bstract-A moment method (MM) solution is developed for the fields EM scattering from thin dielectric shells. The unimoment 14]
scattered by an inhomogeneous dielectric/ferrite cylinder of arbitrary and finite element [151 methods have also been used to
cross-section shape. The incident field is assumed to be a plane wave of calculate the fields scattered by dielectric cylinders. Recently.
arbitrary polarization with oblique incidence with respect to the axis of
the cylinder. The total electric and magnetic fields are the unknown the conjugate gradient method [ 16] has been applied to analyze
quantities in two coupled integral equations from which a system of linear the scattering from two-dimensional dielectric structures.
equations is obtained. Once the total electric and magnetic fields within The problem considered in this paper is the EM scattering
the cylinder are computed, the scattered fields at any other point in space by- a dielectric/ferrite cylinder of arbitrary cross-section shape
are easily calculated. It is noted that for the case of oblique incidence, the [ 171. The incident field is a plane wave of arbitrary polariza-
scattered field has TE and TM, polarized fields regardless of the
polarization (TMz or TE.) of the incident field. The echo widths of tlon with oblique incidence with respect to the axis of the
cylinders and shells of circular, semicircular, and rectangular cross cylinder as shown in Fig. 1. The cylinder is assumed to be
section are calculated for TE, and TM, polarized incident fields. linear and isotropic; however, it can be inhomogeneous and
Furthermore, it is shown that the results obtained for dielectric/ferrite lossy. By replacing the cylinder with equivalent polarization
cylinders and shells of circular cross section with the solutions developed currents, two coupled integral equations are obtained for the
here agree ver well with the corresponding exact eigenfunction solutions. tt e le d int e l ins te ob t ri e rtei total electric and magnetic fields inside the dielectric/ferrite

I. INTRODUCTION cylinder. The solution of the integral equations is obtained by

uHs i EC TRO EC scattering by dielectric following a method similar to that employed by Richmond I 1.

T E EECROmagnetice b steg by dieecral [21. That is, the cylinder is divided into square cells which are
ahor aneticst.odiesobje been studied by several small enough so that the electric and magnetic fields are nearlyforlau tos hathe been widy o eof arbitrary shape two constant within each cell, except for the exponential z-

fac latnsuface (e) wintegl eused; namely, volume (sur- dependance of all the fields due to the oblique incidence of the
dimacensaobjcts. Tles integral equations for three-(two-) plane wave with respect to the axis of the cylinder which
dimensional objects. integral equations can then coincides with the z-axis. A system of linear equations is
solved numerically with the method of moments. obtained by enforcing the condition that the integral equations

The volume integral equations are obtained by replacing the must be exactly satisfied at the center of each cell. Unlike [ I ].
d [21, this paper considers the general case of dielectric/ferrite
equivalent volumetric polarization currents. This method has cylinders. Furthermore, as mentioned before, the incident
been used in [11-[61 to solve scattering problems from two- plane wave field is obliquely incident to the axis of the
and three-dimensional bodies and to study the fields induced cylinder, and it can have arbitrary polarization. Note that all
inside biological bodies [7. A different approach is the the fields in the following discussion have the conventional
surface integral formulation in which a homogeneous dielec- e"' time dependence which is suppressed to simplify thetric object is replaced by equivalent currents along the surface notation.
of the scatter. This method, which can also be used to study
objects made up of homogeneous layers, is employed in [81- II. FORMULATION OF THE PROBLEM
[I I to solve a variety of problems involving dielectric objects. Assume that (9', 1') is the incident field in the absence of

In addition to the two methods mentioned earlier, a the dielectric/ferrite cylinder. Without loss of generality, the
characteristic mode solution is developed in [12] for two- medium exterior to the scatter is assumed to be free space. Let
dimensional dielectric bodies which are replaced by equivalent (, fl) represent the total field; that is, the field excited by the
surface currents. A different approach is followed in [13], incident field in the presence of the dielectric/ferrite cylinder.
where an impedance sheet approximation is used to study the The difference between the total and incident fields is usually

referred to as the scattered field (f', 0is). Thus.
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.. I where K = k sin 0' and 0 < 0' < 1r. Therefore, the complete
solution can be expressed in terms of E, and H, only. Thus,

(ff . )' assume that the incident field (Ei, Hf) is given by

(,,p,. _'an Ei(7)=Eo, exp (-jK; -.) exp (-jkz)

I - POOand

Hi()= Ho, exp (-jK;. j) exp (-jk~z) (5)

where E0, and Ho, are arbitrary constants, k' = - k cos 8',
and= -1 cos 4)' -P sin 4'. (6)

Note that, except for e-kzz, this problem is still a two-
€ ',.,' dimensional problem. To simplify the notation, the z depen-

dance of the fields and currents in the following analysis will
not be shown explicitly.

Once the electric and magnetic currents are defined, the
scattered fields (Ps, 171) can be expressed in terms of theelectric and magnetic free-space dyadic Green's functions,

-- \...namely [19]

6-0 Aj-Aa

Fig I. Geometry for EM scattering by dielectric/ferrite cylinder of +jkeo°(', ")" i(")] ds' oT (7)
arbitrary cross-section shape. ( lim [ ,A.-A o ( , F ) . (l )

radiating in free space. These currents can be expressed as r. (

follows: -jkY 0 (', ;"7) • Af (F')] ds' - (8)
,7(7) = jk Yo (f,- ' I )P (7) ejk-qo

(2) where As is the area occupied by the equivalent currents and
;( = frx' + fiy' is the source location. The area A6 , which

where i70 and Yo = 1/70 are the free-space impedance and excludes the singularities of 10 and j0, i.e., T = n", is called
admittance, respectively, and k is the free-space wavenumber. the "principal area" [191. It becomes infinitesimally small in
Furthermore, the limit as its maximum chord length 6 approaches zero.

Since the value of rand the integrals in (7) and (8) depend on
,(p) =<(U')-jE," (W); ;,(IF) > 1, E(P) > 0 the geometry of A6, the area A6 is assumed to be a circular

(3a) disk. The reasons for choosing this shape will be explained
later. The electric free-space dyadic Green's function 1o is

is the relative permittivity, while given by

, ( ; ) = A; ( 3 *A ) ; A; ( fF) 1 , IA , ( ,F) > 0 - j) K ;; ; ' ) /7 ; ' (7T)
(3b) g e \ k;1 4 2 ) 0

is the relative permeability. Also 7' = ifx + fiy + & and j7 =0+s the relate permaty Also (7), u; + + and u,' ( areallreal while the magnetic free-space dyadic Green's function Io can
ix + fly. Note that ($'), e ;(h'), & (P'), and ut." ( ') are all real b xrse sflos

be expressed as follows:
quantities whose values depend on T, but nor on z.

Since the cylinder is a two-dimensional object and the -J
incident field is a plane wave, the polarization currents land °(, "I)); ' " (10a)
R and all the field components will have the same exponen- 4

tial z dependence as the incident field. It can be shown [181 where
that if all the field components have the same exponential z-
dependence exp (jkz cos 0'), then, all the fields can be f=-i- +

expressed in terms of Ez and H, as follows: a a
= v x (V <v =R -+ + tjk cos 6'

and 2- (.U + flf) (lOb)
17(7)= Vx(Vx(jHz(7))+jkYotE, ('))/K, (4) 2
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and Hi02 is the Hankel function of the second kind of zeroth total EV and 11 fields. However, the expressions for Ex, Ey, H ,
order. It is important to point out that even though Tand the and H, involve the derivatives (with respect to x and y) of E z

integrals in (7) and (8) depend on the shape of A6, their sum and H. Thus, if the derivatives of E, and H, are approximated
does not. by finite differences, (11) and (12) would become difference

To obtain the integral equations, one enforces (1) inside the equations. Therefore, all six unknowns are kept in each cell to
dielectric/ferrite object; namely, avoid this complication, The resulting set of 6N simultaneous

SI1equations with 6N unknowns can then be written in matrix

9(;T) + lim Jk 0 [,()- i]f%(, n") form as follows:I 0AHj-A

k2[,(,) - l ( , i) . _(,) ds' Z(Fr)X= (15)

+[er(p)- liT E(,)= i( ) (11) whereZ((,, L)isa6N x 6Nmatrix and,, and Fare6N x I

I and column vectors, which are given by

jk Yo IE,(7') - I 1 §0(, ;7') E.,,flq)o t-' -Em -M -EX-

yE E(;Y-') + k2[ I I ') l°(;7, p-" 17/(p')] ds' ,E' //: ' / -/"iI•()

e .= E (16)
+ [,(p)- IIT H(p- ) = (p'). (12)

Note that (11) and (12) are coupled integral equations where Vofy 0 ff yl

the unknowns are the fields P(;T) and H('). -

Ill. SOLUTION The vectors R, 1-,, A',and f, (p = x, y, z) are N x I

The solution of the coupled integral equations in (11) and column vectors and they can be expressed as follows:

(12) will be obtained in a fashion similar to that followed by -.

Richmond (11, [2]. That is, the integral equations are EpIEp' EP2 . IP' " Ep']T

transformed into a system of linear equations by enforcing (1 1) E I, E,1, Ep 2, "', E ", EPNJT

and (12) at a number of discrete points. The first step in this
procedure is to divide the cylinder into N square cells which /=i Hi, H,2 H, H',, T

are small enough so that the electric and magnetic fields are - T (17)
nearly uniform in each cell. This is equivalent to choosing the Hp= [Hpi, Hp2, ' i, H , H ; p=x,y,Z (17)

pulse functions {f,(-)} as the basis functions [20]. That where Ein and Hi, represent the p components of the incident
n pn

is, let electric and magnetic fields, respectively, at the center of cell
n and Tdenotes the transpose operation. Note that Ep, and Hp,

Er(;')= Epf,(j7') were defined in (13). That is, Ep, and H,, represent the total

electric and magnetic fields, respectively, at the center of cell
N~ n.

H( i)= Hpf.(;'); p=x, y, Z (13) In calculating the elements of the matrix Z(Er, Ui,), the3 "following types of surface integrals need to be evaluated:
wheree 2

wherr (1 =4 li) 32. - Ho2)(KJl'I-') ds'
1, in cell n of area CA i-0 AJm-A6m aX1 , ax2L (;T" ) , elsewhere n (14) 2) K T -;J ds

1.m= lim0

and {Ea, HI ,' are unknown coefficients that have to be A0 Ajm-A6.

determined. The second and last step in the discretization of x
(11) and (12) is to define a set of testing functions [201. Here, = lim M6- H°)(KI-'I) ds',
the Dirac delta functions {6(x - x)b(y - y)}N are chosen 6-0 Aj,-Aa, aX X2 =X ory

as the testing functions, where (x,, y,) is the center of cell n. (18)
This is equivalent to enforcing (1I) and (12) at the center of
each cell, i.e.. the total field must be equal to the sum of the where Aim is the area of the mth cell and A 6m is the principal
incident ard scattered fields at the center of each cell. area located at the center of the mth cell. In general, these

Substituting (13) into (I I) and (12), and enforcing (1) at the integrals cannot be evaluated in closed form, except for some
center of each cell, a set of 6Nsimultaneous tluations with 6N special geometries, e.g., circular disks. Thus, some sort of
unknowns is obtained. Note that, in general, there are six numerical integration algorithm must be used to evaluate these
unknowns in each cell, i.e., E,, E , E , H., H, and H, integrals, keeping in mind that care should be exercised when

However, as shown in (4), only two field components; the observation point is within the mth cell. The expressions

namely. E. and H, are necessary to determine completely the given in (18), where the singularity of the integrand is isolatedI
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by A&, as the limit 6 - 0 is taken, are, in general, not suitable jr kk'
Dmn. (Kai)JI (Ka,,)(j,,, - 1) - HIII(Kp,,) (27)for practical numerical calculations. This is due to the fact that 2 K)

one does not know a priori how small A,, should be to obtain
a result with a preselected accuracy. There are alternative F -Ka,, k Hi21)(Kpmn)

expressions given in 1191, [211 where A 6 , is a finite-sized 2 J,(Kan)(jurn-l)KOy,-y,)K Kpm,,
pricipal area. These alternative expressions are more suitable
when (18) has to be evaluated numerically. (28)

As already mentioned, when Ajm is a circular disk, the Lmn(Xm, Xn, Ym, Y)= Fmn(Ym, y, x, x,,) (29) I
integrals in (18) can be evaluated in closed form [1], [2]. Thus,
to simplify the evaluation of the elements of the matrix Z(e,, where
Ir), the square cells are replaced by circular disks of the same
cross-sectional area. Furthermore, as indicated before, the p,.. = ((X. - X" ) I+ (Yin - y") 2)1 /2.
principal area A6,, is also assumed to be a circular disk which
allows the closed-form evaluation of the integrals in (18). It is B. n = m
shown in the next section that this approximation, which I
greatly simplifies the evaluation of the elements of Z(e,, U'), B ,,=, J,,,,, = L,,, = F,,, = 0 (30)
gives good numerical results. (Em- 1)

The matrix Z(4E,, p,) in (15), which is partitioned into Am,=,m=I 1- k' 2[rKamH'i2)(Kam)-2j
submatrix blocks, is then given by 2jK 2

rZ1(, Z((,) 1 -(~n 1) (1
Z(I I.)= (19) + 4 rKamI, 2)(Ka)-4j 1

-Z 2 (fJ: Z CU,) J 4
where Z, and Z2 are 3N x 3N matrices and can also be
partitioned into submatrix blocks, namely, Pro.= 1 + .- l)[TKamHj2)(Kam) - 2j] (32)2 !

Z,(,)= B I i i ,) -D 0 LLAD - (2t,K - liKamH(11(Kam)-j- (33)
-- - -1 -------- . . i-- 2K

(20) where e,, and Pm are the relative permittivity and permeability
of cell n, respectively, and the radius of the nth circular cell,

where 0 is the null N x N matrix. The matrices A, B, C, I, J, denoted by a,,, is equal to c,,/-i. Thus, (21)-(33) completely

P, D, F, and L are N x N matrices whose elements are given define the matrices Z1(e,) and Z2(A,). The expressions for the
by the following expressions: elements of Z,.(j,) and Z2(e,.) can be easily obtained by

replacing e, and 1L,. by A,,, and en,, respectively, in (21)-(33).
A. m n; n, m = i, 2, ". N Note that by inserting the appropriate equations for the

-E,- l)irKa,,l (Ka,,) incident field, one can obtain solutions for any two-dimen-
Am,- 2j k; 

2H(2)(Km,)/K 2  sional source, i.e., line source, array of line sources, etc.
2j 0 Assuming that the simultaneous equations have been solved,

-+ i.e., the total E, and H, fields have been determined at the
+ 1[ - K3p,,( Y,,, -Y,,) 2H)(Kpr ) center of each cell, the scattered fields Es and Hs can easily

(Kp~,,) be obtained at any point outside the dielectric/ferrite body.

Y Y) 2 - (xm -x) H(21) Thus, after reintroducing the function e-i z z, the expressions
for Es and Hs are given by

=- (f,- 1) wKa,,J1 (Ka,,)K 2(Xm X,,)(Ym -y,,)NkaJK,)(n-)I2j (Kjo ,) E (x , y , z)= r a J;K j A . H (2)(K po n)

(,2 1 Pl
I2H,21(Kp..,)-Kp.,,H 1(Kpn,)] (22)

1rKa, k,' K ( x. -x,,) { ?oHy.( x- x,,) - 7ioH.( y - y,,)} emy* ; --

CmM O -(, 1-) 2 J( K (K) H(j2 (Kpmn,) ir N

(23) 2Kj .=, I

l,,(x,., xf, y,, Yn) = Am,,ot , y,, x, , x,,) (24) K
iny,,)= Ci,,,(y,,, y,,, x,,,, x,,) ,)• Ez,, +jk" - H 1(Kp,,)[ E,,(x- x,,)

Jm," (x , Xn, l y ,, , ) Ji (KQ , Ff" X KpmX") (26) +Ev n (

P ,,,, -O r"- 1) r a JI(K a ) H lo(K p..) (26) + EI,,(Y - Y,,)) e ' :(34)
_;F 0



242 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. VOL. 36. NO. 2, FEBRUARY 1988

cr-3-JO. 3

0

--exact: solution.

1b b

-0 45. 90. 435. 480. 2 5. 70. 345. 360. -s 45. 90. 435. ISO. 75. 70. 345. 360.

ANGLE PHI IOEG.) ANGLE PHI (OEG.A

I(a) (b)

Fig. 2. W(db, 0") sin 0"/X of circular cylinder for obliquely incident plane wave (6' = 45). (a) TM, polarization: Eor = I, /o.
= 0. (b) TEM polarization: E0, = 0, ,7oHo, = i.

I 0H (x, y, z, x,,, y,,, -E. -E. Substituting (4), (5), (35), and (37) into (38) yields the

II
.oH ., o1oHy0 , . , , ) following expression for the echo width per wavelength:

ANGLE HI ME.) ANLE PH+I MEo .

rE'(X, y, z, x.,y, ox. _o___W_,0'_ limr k"o(9
E(a E, o.,,, e,,) (35) ( b01E 0, 2 + IooHo,12

where ? , is the free-space wavelength.gwhere Note that for the case of oblique incidence, the scattered

p.[x x)2 + (y -y9 )2 1 112. field will have both TM, and TE, polarized fields regardless of
the polariz=tion of the incident plane wave field. in the nextThe far-zone scattered fields are obtained by employing the section, W(4, 0') sin 0'/X will be calculated for various

asymptotic form of the Hankel function (large argument form) geometries for a TM, and TE, polarized incident plane wave
and by approximating p as follows: field, respectively.

1 1p P p0- x cos -y f sin ; --- (36) IV. NUMERICAL RESULTS

UPn Po The results obtained in Section II[ have been implementedwhere P0 w (x2 + Y2)h The expression for E' in the far with a Fortran program on a VAX 11/780 computer. Using
zone becomes (35), (37), and (39), numerical results were obtained for the

following geometries.

E7(p, z j (Ka.)J(Ka ) A. Cylinder of Circular Cross Section
2 Figs. 2(a) and 2(b) depict the echo width of a circular

[k cylinder of radius 0. I A for obliquely incident (6' = 45°)TM,
( n-)[o~~cs o~ninb] (4o = l, H) = 0) and TEz polarized (Eo, = 0,,1 oHo, = !)plane wave fields, respectively. For each polarization, two, sets of values of(, I,) are considered to illustrate the effct of

(, - I)f,, -(o sn4EMI . and p, on the echo width. As indicated in the previous
sections, the circular cylinder is divided into cells whosewhr .eJk(xnC ,,+ y n. K e on for cross-sectional areas must beo a cls tsqa as possible. It

zone beoe- (3 ) is known from experience [Ie, [2] that, to obtain good
numerical results, c must satisfy the inequality

and is obtained by substituting (37) into (35).
The scattering properties of a two-dimensional body can be c 0.

epressned in erso width. The echo width W(t, b l t o eult onfe-tenthu
k cld of as fXllows [181:

i k' , ) (3 where c is the length of one side of the square cell. In other
'(, 0 ) E -r 2 K (os OE, 0')lz  c,8 w du, s th e elec i cythA indr. tecd er in Figt.e pre

,,,, i£0 waelthions dthe i lr i cylinder .isdiie cinel whosee Ko-etoa ra utb scoet qae spsil.I
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0; 7

4 7

3t Cr 2.iO-O0 2

MM solution
e.50--- exact solution

is. go9. 13. I6S. 225. 2 ?0. 3; ST 360. v. 90. 135. ISO. 225. 270. 31s, 360.ANGLE PHI (DEG.] ANGLE PHI IDEC.1

(a) (b)

Fig. 3. W(0, 0') sin 0'/X of cylindrical shell of circular cross-section shape. (a) TM, polarization: Eo, 1, I.iH 0 = 0. (b) TEz

er-2 .O. 08  
er,3 -JO. 3

9 r-3.. O. 3  ri01

.~~v'A'.&jo I-.~ ~v

#'-1800. 9145

ri-0.3% r2-. 5A r3J

0:3 MM solution
'Ar 2j ---exact solution

'5.1 1;0. 90.. 230. iso. 3s60. 35 30
o. a. 90. 135.I 2.20 1.30 ANGLE PHI [DEG.)

ANGLE PHI 10EG.)

(a) (b)

Fig. 4. W(0, 0') sin 6'/X of cylindrical shell of circular cross-section shape for obliquely incident plane wave (6' = 4S*). (a) TM,
polarization: E0, I . qoHo, =0. (b) TE, polarization: EO = 0, IIIHO, = I.

2 was divided into 25 square cells (N = 25) of the same cross- TM, case, the echo width in the backscattered direction (
sectional area, i.e., (3.54 X 10 -2,\). The moment method 180*) is significantly reduced when the values of e, and jt, are
solutions for the circular cylinder shown in Fig. 2 are changed from E, =2 - j0.08, Is, = 3 - j0.3 to e, = 3 -

compared with the exact eigenfunction solutions which consist j0.3, us, = 2 - JO. 1. The opposite effect is observed for theI
of infinite series involving Bessel and Hankel functions [221. TE, case as shown in Fig. 4(b). The shell was divided into 41
Note that the agreement between these two independent cells (N = 41) which means that a system of 246 simultaneous
solutions is very good. equations was solved. It took about 3 min of CPU time on a

VAX 11/780 computer to obtain the moment method solution
B. Cylindrical Shell of Circular Cross Section for each polarization considered in Fig. 4. As in the case for

In Figs. 3(a) and 3(b), the echo width of a circular cylindri- the circular cylinder, the moment method solutions for the
cal shell is depicted for a TM, and TE, incident plane wave, circular shell are compared with the exact eigenfunctionI
respectively. In both cases, the shell was divided into 66 cells solutions. The agreement between the two solutions is very
(N = 66) and the solutions for a normally and obliquely good as illustrated in Figs. 3 and 4.
incident plane wave are depicted. In Fig. 4 a shell with .Siicla Shell
different dimensions was considered. The angle 0' was set to
45* and the parameters e, and 1A, were changed to illustrate the Figs. 5(a) and 5(b) show the echo width of a semicircular
effect of these parameters on the echo width. Note that for the shell which was divided into 20 cells of the same cross-
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a a

S'-270 N-20

I - € e-3-j 0. 3 , / ,

01-45*
-. 90.

II

. 0 ' I 300.

2 0. 35 5. 90. 135. 100. 22S. 270, M1. 360.
ANGLE PHI IDEG.) ANGLE PHI (DEC.)

(a) (b)

Fig. 5. W(W, ') sin 9'/, of cylindrical shell of semicircular cross-section shape. (a) TM, polarization: E, = 1, j0 Ho = 0. (b)

TE, polarization: E0o 0, ioH = 1.

, .1

-L-2 d-0. IX I

-I I 
I

" - e~~'=45* .'
' __~cr-3-J0. 3 r-2-JO.!I _ r-3-0.3 + 2cos(wx/L)

.~Lr-(2.-J0. l)lxl/L+ .

*=9. NO 7 . . .' . I..

4. 5. 90. 135. 10. 22S. 27. 315. 360. . 45. 90. ,35. 'at). 2'. 270. 315 . 360.
ANGLE PHI (DEG.) ANGLE PHI (DEG.)

(a) (b)Fig. 6. W(0, 0') sin 0'/X of cylinder of rectangular cross-section shape excited by broadside incident plane wave. (a) TM,

polarization: F-.o, = 1, 0Ho, = 0. (b) TE polarization: 4 = 0, oHoz = 1.

lsectional area. Both the TM, and TE, polarizations are is allowed to be inhomogeneous. First, the echo width of a

considered; however, no exact solution is available for this homogeneous rectangular slab is calculated for e, = 3. - j0).3
geometry to compare with the solutions obtained here. To and ur = 2. - jO. . Next. the same slab is assumed to be
study the effect of the angle 0' on the echo width, Fig. 5 shows inhomogeneous (in x), namely,

the echo width calculated for a normally and obliquely incident
plane wave, respectively. c,(x) = 3. -jO.3 + 2 cos ( bx/L)

.D. Cylinder of Rectangular Cross Section s,(x) = (2. -je. b)y oxa iL + I

Finally, in Figs. 6 and 7 a the echo width of a cylinder of

rectangular cross section is considered. In Fig. 6, e angle of where x varies from - L/2 to L/2 and L is the width of theincidence is h' = 90 (broadside), while in Fig. 7 the case of rectangular slab. Since the integral equations in (11) and (12)

grazing incidence is considered (' = 0). Note that in both are enforced at the center of each nth cell, E, and )r have to be
case% ' = 45 and unlike the previous examples, the cylinder evaluated at (x,, y,). Thus nt,, and 1, can be written as

pln!ae epciey rX .- 03+2cs(xL
D.Clndro Rcagua rosSctoI,()(.-OIxI
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6aA -t- --..- '

a'I" I II

za \ e'-45"6 II

I, ~~cr=3-JO.3 Mr=2-J0 .1  " ,I I II ?1fl
II I I""'

6' C- -3-JO.3 + 2cos(vx/L)

, r=(2.-j0.1)jxj/L+1 /

ANGLE PHI IEG.)

(a) (b)

Fig. 7. W((h, 0') sin 0'/X of cylinder of rectangular cross-section shape excited by plane wave having grazing incidence. (a) TM
polarization: E = I, qoH 0 = 0. (b) TE, polarization: E0, = 0, %,oHo, = 1.

follows: number of Z. Unfortunately, as pointed out in [241, the
=3. -j.3 + 2 cos (x/) condition number will not indicate whether the best expansion

functions are being used. Finally, several numerical examples

m(xn) = (2-j0.l)jxnj/L + 1. were presented and compared with the exact eigenfunction
solutions when they were available. The agreement between

Since the cylinder was divided into 80 identical square cells, a the independent MM and exact solutions was shown to be very
system of 480 simultaneous equations was solved. As in the good for the cases considered here. An interesting feature of
case for the semicircular shell, no exact solution is available the case of oblique incidence in problems involving dielectric/
for the cylinder of rectangular cross section. ferrite cylinders, which does not hold for the special case of

normal incidence, is that the scattered field has TE, and TM,
V. CONCLUSION polarized components regardless of the polarization (TMZ or

A moment method solution has been developed to calculate TEL) of the incident field.
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An Overview of the Hybrid MM/Green's
N Function Method in Electromagnetics

EDWARD H. NEWMAN, SENIOR MEMBER, IEEE

lhis paper presents an overview of a hyb d technique for solv- region of the current the vector dot product of the current
tog electromagnetic radiation and scattering problems by corn- distribution and the dyadic Green's function. Green's func-
bining the method of moments (MM) with a special Green's func.
t'i n. The method, commonly referred to as an MM,'Green's func- tions tend to be highly accurate and, as compared to MM
t on solution combines the ability of MM solutions to treat geo- solutions, in many cases they are computationally efficient
metricall complex bodies with the accuracy and computational in that they can be evaluated with a minimum of effort. The
efficienc y of Green's function solutions. As compared to a stan- main limitation of Green's function solutions is that, except
dard AM solution, the MM/Gre'r.'s function solution reduces the for a few simple shapes [41-[61, the Green's functions are
number of unknowns. and thus reduces the computer storage
requirements. In most, but not all cases, the CPU time for the MM/ difficult to obtain, with each new geometry requiring a new
Green's function solution is considerably less than that for a stan- analysis.
I lard MM solution. The basic formalism of the MM/Green's fune- With the widespread availability of high-speed digital
tion soluritin is presented and contrasted to that of the standard computers in the mid-1960s, a numerical technique known
MM solutio,-,. The example problem of TM scattering by a semicir-
(clar strip in the presence of a circular cylinder is solved by the as the method of moments (MM) (1]-[3] began to gain pop-

MM, and by the MM/Green's function technique with a matrix, ularity. Consider the standard MM solution for a problem
exact eigen functlon, ann high-frequency Green's function, involving two scatterers, which we term Scatterer 1 and

Scatterer 2. The first step is to use the surface and/or volume
INTRori..c- 1oN. equivalence theorems [1], [7] to replace both scatterers by

This paper will present an overview of a technique which free-space and equivalent currents. An exact integral equa-
ttion for the equivalent currents is then formulated and

Gombines the method of moments (MM) [l]-[3] and a involves the relatively simple free-space Green's functionGreen's function [4] in the solution of electromagnetic intskre.Teunonqivltcretsaehn

radiation and scattering problems. Thetechnique istermed in its kernel. The unknown equivalent currents are then

an MM/Green's function solution and combines the flex- expanded as a finite sum of N, basis or expansion functions
ibility of MM solutions for treating scatterers of complex on Scatterer 1 and N 2 basis functions on Scatterer 2. N, and
geometry with the accuracy and computational efficiency N 2 weighted averages of the integral equation are enforced
of Green's function solutionsd on Scatterers 1 and 2, respectively. This transforms the inte-
ofGensIucinsouin.gral equation into an order N1 + N2 matrix equation, which

A general problem in electromagnetics is that of finding ca e s olvd or e N + N 2 oeficie tin h ion

the field, of known or impressed currents radiating in a vac- can be solved for the N + N2 coefficients in the expansion

uum or homogeneous medium in which is present one or for the equivalent currents. The total fields radiated by the

more rhomogeneities or scatterers. Traditionally these impressed currents in the presence of the two scatterers is
Shave been solved bwhat c be called Green's the sum of the free-space fields of the impressed currents
function te( hniques. That is, one attempts to find either and the equivalent currents on Scatterers 1 and 2. The main
exact or approximate explicit formulas, known as Green's advantages of the MM approach are that it is accurate and

functions, for the fields of an infinitesimal current element extremely versatile as to the geometries which it can treat.

radiating in the presence of the scatterers and/or bound- For example, while the exact Green's function solution for
aries. The fields of the known impressed current are then scattering by a dielectric cylinder appears only to be pos-

roun(J by superposition, that is by integrating through the sible for the circular cross section [6], MM solutions are
available for the scattering by dielectric cylinders of essen-
tially arbitrary cross section [8], [9]. However, as compared

Manus(ript re(eived August ti, 1987; revised January 14, 1988. to Green's function techniques, MM solutions usua!ly
The submission of this paper was encouraged after review of an require more computational effort.
advan(e proposal. This work was supported under Contract Inan MM/Green's function solution to the sametwo scat-
N00014-78-C-0049 between The Ohio State University Research terer problem described above, Scatterer 1, but not Scat-
Foundation and the oint Service Electronics Program.

The auth )r is with the Department of Electrical Engineering, The rer 2, is replaced by free-space and equivalent currents.
Ohio Yate I Jniversttv, Columbus, OH 41212, USA. An exact integral equation for the equivalent currents rep-

IIEF Iog Number 8820076. resenting Scatterer 1 is formulated and will involve the rel-
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atively complicated Scatterer 2 (as compared to the free- Rao's [29], [30] analysis of a two-element Yagi array in a par-
space) Green's function in its kernel. The unknown equiv- allel plate waveguide in 1965. It is interesting that this work
alent currents on Scatterer 1 are expanded as a finite sum was done before Harrington [2] published his description
of N, basis functions. N, weighted averages of the integral of the MM in 1967. Other work involving wires in wave-
equation are enforced on Scatterer 1. This trdnsforms the guides or cavities include Taylor's [31] and Tesche's [32]
integral equation into an order N1 matrix equation, which solutions for a wire in a parallel plate waveguide, and Sei-
can be solved for the N, coefficients in the expansion for del's [33] solution for a wire in a cavity. MM/Green's func-
the current on Scatterer 1. The total fields radiated by the tion solutions for posts in waveguides have been done by
impressed currents in the presence of the two scatterers is Leviatan etal. [34], Auda and Harrington [35], and Jarem [36].
the sum of the fields of the impressed currents and the Material bodies in waveguides have been analyzed by Wang
equivalent currents on Scatterer 1, both radiating in the [37], Omar and Schunemann [381, and Hsu and Auda [39].
presence of Scatterer 2. Khac and Carson [40] have analyzed a slot in a waveguide

As compared with the Green's function technique, the and Thong [41] has analyzed waveguide discontinuities.
MM/Green's function method has the advantage that it is Several MM/Green's function solutions have been
applicable to a much wider class of geometries. This is obtainedforcasesinwhichScatterer2isoneoftheclassical
because the MM/Green's function method requires that we shapes which fits into a separable coordinate system, and
know the Green's function for either Scatterer 1 or 2, while thus has a well-known Green's function. Solutions for wires
the Green's function method requires that we can find the in the presence of spheres have been presented by Tesche,
Green's function for the combination of Scatterer 1 in the Neureuther, and Stovall [42]-[44] and by Butler and Ke-
presence of Scatterer 2. As compared to a standard MM shavamurthy [45]. MM/Green's function solutions involv-
soiution, the MM/Green's function method has the advan- ing circular cylinders have been done by Misra and Chen
tages that the number of unknowns in the matrix equation [46], Steyskal [471, Karunatatne et al. [48], and Lamensedorf
is reduced from N, + N, to N1, thus reducing the required and Ting [49]. Wire antennas near the edge of a half-plane
computer storage. The disadvantages of the MM/Green's or a wedge have been analyzed by Pozar and Newman [50],
function technique is that since the kernel of its integral [51]. Newman has analyzed a material cylinder of arbitrary
equation involves the relatively complicated Scatterer 2 cross section in the presence of a half-plane [52], [53], and
Green's function, the evaluation of a typical element in the Newman and Blanchard [54] have analyzed an impedance
MM/Green's function matrix equation is more difficult and sheet in the presence of a parabolic cylinder. Section III of
time-consuming than that in a standard MM solution. How- this paper presents an analysis for a semicircular strip in the
ever, if Scatterer 2 is substantially larger than Scatterer 1, presence of a circular cylinder.
then N, >> N1, and the CPU time for the MM/Green's func- Most of the above referenced works were natural MM/
tion solution is almost always considerably less than that Green's function solutions in that Scatterer 2 was oneof the
of the standard MM solution, few shapes forwhich an exact Green's functionwas known.

Probably the most common use of MM/Green's function Thiele and Newhouse [55] greatly expanded the range of
solutions has been for problems involving antennas in the problems which could be solved via the MM/Green's func-
presence of a plane dielectric interface, suc h as a flat earth. tion technique by recognizing that the geometrical theory
In this case, the antenna is Scatterer 1 and the dielectric half of diffraction (GTD) [56] could be used to obtain the asymp-
space, representing the earth, is Scatterer 2. Of the many totic or high-frequency Green's function for a large class
papers in this area we mention the work of the group at of electrically large bodies (Scatterer 2). This important spe-
Lawrence Livermore Laboratory [101-[ 13], much of which cial case of the MM/Green's function technique, where the
has been incorporated into a user-oriented computer code GTD is used to evaluate the Green's function, is referred
[14], the solution of Chang and Wait for a vertical wire over to as an MM/GTD solution. For problems involving elec-
the earth [15], the use of ray methods by Tiberio et al. to trically small and large parts, MM/GTD solutions are ideal
represent the energy refle( ted from the earth [161, and the since the MM can efficiently treat the electrically small part
use by Parhami and Mittra of an approximate but highly of the problem (Scatterer 1), while the GTD can efficiently
accurate representation of the exact half space Green's treat the electrically large part (Scatterer 2). The earliest use
function [17]. Solutions for obstacles other than wires in the of the MM with an asymptotic Green's function appears to
presence of a flat earth have also been presented in [18]- be that of Green [571 for a monopole on the base of a large
[201. A closely related problem is that of printed circuit cone. Other applications include that by Awadalla and
antennas. Here the printed circuit antenna is Scatterer 1 Maclean [58], [591 and by Marin and Catedra [601 to analyze
and the dielectric substrate is Scatterer 2. Again, there are a monopole on a plate. MM/GTD solutions for wires on
a large number of papers, and we mention MM/Green's curved surfaces have been presented byEkelmanandThiele
fun(tion solutions for rirostrip antennas by Pozar [211, [61]and by Henderson and Thiele[621,[631.ThieleandChan
[22], Newman and Forrai [231, and Bailey and Deschamps [641 have used the MM/GTD to efficiently generate large
[24]. In addition, Alexopoulos et al- have published several amounts of frequency domain data so that the Fourier
papers on printed (ir( uit dipoles [25], [261. A se( ond related transform could be used to obtain time domain results. Also,
area is that ot periodi( arrays in multilayered dielectri( slabs Ko and Mittra [65] have developed an iterative MM/GTD
ot which [27], [281 are representative, solution which allows for a check as to how well the solu-

Another popular use of MM/Green's tun( tion solutions tion satisfies the boundary (onditions.
has been for problems involving antennas or other obsta- Harrington and Mautz [66] and Glisson and Butler [67]
ties in waveguides and cavities. In these (ases, Scatterer I showed that for a Scatterer 2geometrywhich is so complex
was the antenna and Scatterer 2 was the waveguide or cav- that it is not feasible to obtain a functional expression for
ity. Possibly the first MM/Green's fun(tion solution was its Green's function, an MM/Green's function solution is
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still possible. This is done using a numerical Green's func-
tion which is evaluated by an MM solution of Scatterer 2. (Jt .Ik _,
Harrington and Mautz used the MM to find the numerical
Green's function for a body of revolution. Glisson and But- s2
ler applied the MM/Green's function technique, with
numerical Green's function, to the problem of a wire (Scat- (A10 40 SCAT. 2

terer 1) in the presence of a body of revolution (Scatterer
2). The concept of a numerical Green's function is similar , I
to Harker's [68] matrix partitioning method and to the matrix (a)
Green's function discussed in the next section.

There are several hybrid techniques, related to the MM/ ,- -,
Green's function technique, which will not be treated in ((E. _") lH ,)
this paper. In particular, we mention the so-called GTD/MM C/ /

technique which uses the MM to numerically evaluate an -_ ,s2

unknown liff raction coefficient [691-[711. Thiele etal. have I A

developed a hybrid theory of diffraction (HTD) which uses , C ") (So. '0) i"2
a high-frequency approximation for the current on a por- s, A 2
tion of the body and the MM on the remainder [72], [73]. In n,
a related technique, Mitschang and Wang incorporate the (b)
high-frequency currents into the MM solution for scatter-
ing by a body of revolution [74]. Azarbar and Shafai [75] effi-
ciently analyzed large reflector antennas by employing an ,_ (E H

MM solution which solved for the difference between the
actual and the physical optics currents on the surface of the -.... \2

reflector. Finally, Richmond [76] has developed a physical (Po ,C) I 2 A'.basis technique for an MM solution of awide dielectric strip 0. 4 O _

which involves only three basis functions.
Section 11 of this paper presents the basic formalism for

a standard MM solution and an MMIGreen's function solu-
tion. The two methods are compared and the concept of
of a matrix Green's function is introduced. Section III solves Fig. 1. (a) In the original problem the impressed currents
the example problem of TM scattering by a perfectly con- radiate in the presence of two perfectly conducting scat-

terers. (b) In the standard MM solution, both scatterers areducting semicircular strip in the presence of a perfectly replaced by free-space and equivalent currents. (c) In the
conducting circular cylinder by a standard MM solution, MM/Green's function solution, only Scatterer 1 is replaced
and by the MM/Green's function method using a matrix, by free-space and equivalent currents.

exact eigenfunction, and GTD Green's function. Section IV
briefly summarizes the main points of this paper. superscripts. For example,we usethe notation of the super-

scripts 0,2, or S2, to indicate a quantity computed from the
II. MM ANt MM/GREEN'S FUNCTION FORMULAIIONS fields of a current in free-space, in the presenceof Scatterer

A. Problem Geometry 2, or the fields scattered from Scatterer 2,respectively. The
subscripts 1 or 2 will be used to denote a quantity associated

This section will outline the MM and MM/Green's func- with Scatterers 1 or 2, respectively. The integer subscripts
tion solution for the scattering by two perfectly conducting m and n are used to refer to MM basis function numbers,
s(atterers. The basic geometry is shown in Fig. 1(a). Here while the integer subscript p refers to term p in a cylindrical
we have the impressed currents, (/', M'), radiating in the eigenfunction expansion. Finally, the superscript 'denotes
presence of two perfectly conducting obstacles, termed a quantity associated with the impressed currents. This
S( atterers 1 and 2, and producing the total fields (E, H). In notation is summarized in Table 1.
free-space the impressed currents radiate the incident fields

(E", H'0 ). Scatterer 1 is enclosed by the surface S, which has Table 1 Summary of Superscript and Subscript Notationoutward unit normal A1, and similar definitions apply to
S(atterer 2. The ambient medium is free-space with perme- Notation Implies a Quantity Associated with...
ability and permittivity (po, re). All fields and currents are Superscript 0 the free-space fields of a current
time harmonic, with the el" time dependence suppressed. Superscript 2 the fields in the presence of Scatterer 2
Here . = 2r f is the radian frequency, X denotes the free- Superscript 52 the fields scattered from Scatterer 2
spa( e wavelength, and k = 2r/X. For simplicity, we present Subscript 1 Scatterer 1 or the N, modes on Scatterer 1

Subsript 2 Scatterer 2 or the N2 modes on Scatterer 2
the MM and MM/Green's function solution for perfectly Superscript i the impressed currents (1', M')( ondu( ting obstacles, and unless specifically noted, all Subscript mor n MM modes mor n

general remarks apply equally well to problems involving Subscript p cylindrical eigenfunction term p
penetrable scatterers.
The MM and MM/Green's function solutions can be nota-

tionally (omplex, involving many quantities, some of which B. MMSolution

differ only slightly in their meaning. To minimize confu- As illustrated in Fig. 1(b), the first step in the standard MM3 sions we introduce a notation based upon subscripts and solution is to replace all matter, i.e., Scatterers 1 and 2, by

3 272 PROCEEDINGS OF THE IEEE, VOL. 76, NO. 3, MARCH 1988



free-space and by the equivalent electric surface current where [Z°] is the N x N impedance matrix, (V] is the length
density ) where N right-hand-side or voltage vector, and (I] is the length N

fli x H on S, solution or current vector which contains the N = NI + N 2
I= = (1) coefficients in the original expansion for the current in (6).

2 i2 x H on S2. Typical elements of [Z °] and [V] are given by

Note that) is unknown since H is unknown, however,)will Zon = - EO(.) w. ds
be found in the MM solution. By definition, the scattered

fields are the difference between the total fields and the m

incident fields. In the equivalent problem of Fig. 1(b), the - ]
scattered fields are the free-space fields of ), denoted (E°(j), = w,.ds (9)
H0(I)). In this case, the total fields are M n

E - + E°(j) (2) VO =

H = H + He(j). (3) m

Note that we use the notation of superscript ' to imply the As indicated in (9) and (10) the ds integrals are over the sur-

free-space fields of a current distribution, face of the mth weighting function, while the ds' integrals

An electric field integral equation (EFIE) for I is obtained are over the surface of the nth expansion function.
by enforcing the boundary condition that the total electric Assuming N1 basis functions are employed on Scatterer
field tangential to S, and S2 must vanish on the surfaces S, 1, and N 2 basis functions on Scatterer 2, Fig. 2 shows the

and S2. Then from (2) matrix equation (8) partitioned into blocks, corresponding
to the basis functions on Scatterers 1 and 2. Here [Z 1 ] is the

-E°(l) = E' tangential components on S and S2. (4)

Equation (4) is an integral equation for I since -- N 1' u----- N 2 -

T1
E ) ds' (5) N [z [z 0,1 1 "1j

S, S2

where C ° is the dyadic free-space Green's function [4]. Basi-
cally ;0 is a 3 x 3 matrix which gives the free-space vector [ Z  I

electric field of an arbitrarily oriented infinitesimal electric N2 z i
current element. For example, in the rectangular coordi-
nate system, the i, j element of Z 0 is the i, 9, or 1 polar-.L L
ization (for j = 1, 2, 3) of the free-space electric field due to
an infinitesimal electric current element with dipole ori- Z N [V
entation i, y, or 2 (for i = 1, 2, 3).

Equation (4) must now be solved for ). The first step is to Fig. 2. The standard MM matrix equation is partitioned into
expand ) in terms of an appropriate set of expansion, basis, blocks related to basis functions on Scatterers 1 and 2.
or interpolating functions. Thus we write N, x N, block of [Z] which represents coupling between

N basis functions on Scatterer 1, Z12] is the N1 x N2 block of
J=, _ I6 Z °] which represents coupling between basis functions on

Scatterer 1 and basis functions on Scatterer 2, [11 is the first
where the),I are a set of N known linearly independent basis NI elements of [I] containing the coefficients of the expan-
functions defined on S and $2, and the I, are a set of N sion functions on Scatterer 1, etc. Note that [Z01] and [Z 2]
unknown coefficients (n = 1, 2, , N). Denoting E(l,) as are the MM impedance matrices for isolated Scatterer 1 or
the free-space electric field of ,, and substituting (6) into Scatterer 2, respectively, in free-space. Similarly, [V] and
(4) yields [V1 are the voltage vectors for isolated Satterer 1 or Scat-

- Z IEO(j,) = F0 terer 2, respectively, in free-space. As shown in Table 1, the
-= notation being used is that the subscript 1 indicates a quan-

on S, and S (7) tity associated with the first N, basis functions on Scatterer
tangential components o1, while the subscript 2 indicates a quantity associated with

Now define a set of N linearly independent vector weight- the N 2 basis functions on Scatterer 2.

ing functions, w.(m = 1, 2, • - • , N), on and tangential to Using standard techniquL- 3of matrix algebra, (8)can now

the surfaces S, and 52 If in (6) the first N, expansion func- be solved for the current vector [I] which when substituted

tions are on S, and the last N2 are on S2 (N = N, + N 2), then into (6) provides an approximation to the current on the

the first N, weighting functions are on S, and the last N2 are scatterers. In principle, as N is increased, a well-formulated
on S2. Taking the inner product of both sides of 7)with each MM solution approaches the exact solution. For problems

of the N weighting functions converts (7) into an N x N which are formulated in terms of an unknown surface cur-

system of simultaneous linear algebraic equations which rent density, the number of unknowns, N, which must be

can be written in matrix form as retained in the MM solution is proportional to the electrical
surface area (S + S2)/X2, with values from 24 to 100 basis

[Zl]I = [V] (8) functions per X2 being typical.
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The CPU time necessary to compute [Z0j is proportional stituting (16) into (14) yields
to N 2. The CPU time to solve (8) tends to be proportional N,

to N' for small to modest N, but to N3 for large N. Thus, if - , i, E2(J.) = Ei
N is not too large, the computer CPU time and storage n=1

requirements needed to carry out the MM solution vary tangential components on S, only (17)
roughlyas N 2 or as f 4. As the frequency is increased N must where E2(J) is the electric field ofI., located on S1, and
be increased, and at some point the computer resources
needed to solve the problem become prohibitive. For this radiating in the presence of Scatterer 2. Taking the inner
reason, MM solutions are often referred to as low-fre- product of (17) with a set of N1 weighting functions located
quency solutions, applicable to bodies which are not too on $1 reduces (17) to the matrix equation
large in terms of a wavelength. [Z2][11 ] = [V 2] (18)

C. MM/Green's Function Solution where [Z2J is the N1 x N1 impedance matrix, [11] is the length
N1 current vector containing the unknown coefficients in

The fundamental difference between the MM and MM/ the expansion for)1 , and [V 2] is the N1 element voltage vec-
Green's function solutions is that in the MM/Green's func- tor. Typical terms of [Z 2] and [V 2] are given by
tion solution some, but not all, of the matter is replaced by
free-space and equivalent currents. In the equivalent prob- Z2 = - E2j) W. dS
lem of Fig. 1(c), Scatterer 1, but not Scatterer 2, is replaced Zmn=

by free-space and equivalent currents. Then, in contrast to M

(1), the equivalent currents for the MM/Green's function I[solution are = _ [). - ds' • w. ds (19)

1=A11 =n H on S1 only. (11)
In Fig. 1(c), the total fields are the superposition of the fields V2 = E 2 • w,. ds. (20)
of the impressed currents and I,, both radiating in the pres- M

In of 1ctttlfelds re The ue oition ofz tha eds (E, E'(wd),20
ence of Scatterer 2. Then denoting (E2 , H 2) and (E 2( 1 ), The above expressions foc the elements in the MM/Green's
H2(11)) as the fields of the impressed currents and J, respec- function matrix equation are identical to those for the stan-
tively, radiating in the presence of Scatterer 2, the total fields dard MM solution (9), (10), except that we replace the free-
are i2space fields with the fields in the presence of Scatterer 2

E = E'2 + E'(I) (12) Equation (18) can now be solved for [/I], which when sub-
stituted into (16) provides an approximation to the currentH=H + H2(J1). (13) on Scatterer 1. The total fields are then found using (12) and

As indicated in Table 1, the notation of superscript 2 implies (13).
the fields of a current distrihution in the presence of Scat- The fields of any current distribution in the presence of
terer 2. Inherent in the MM/Green's function formulation Scatterer2can always bewritten as the sum of the free-space
is that we know (to an acceptable accuracy) the Green's fields of the current plus a correction term, corresponding
function for Scatterer 2. That is,we knowthe nearzone fields to the fields scattered from Scatterer 2. Thus we can write
of a current element in the vicinity of Scatterer 2. ?; = ?0 + ?S2

The EFIE is obtained by enforcing the boundary condition
that the total electric field tangential to S1 must vanish on E2(J,) = E°(J.) + ES2(L,)
the surface S1. Then from (12) E" = E'0 + Eis

2  (21)
-E2(k 1 ) = Ei2 tangential components on S1 only. (14) where the superscript S2 implies the fields scattered from

Note that it is not necessary to explicitly satisfy the bound- Scatterer 2. Using this notation, (18) can split into its free-
ary conditions on Scatterer 2, since it is implicit in (14) that space and scattered components as
all sources radiate in the presence of Scatterer 2, and by ([Z°1J + [Z5 2 ])[l,] = (V] + [Vs 2] (22)
definition these fields satisfy the boundary conditions on
Scatterer 2. Equation (14) is an integral equation for 11 since where the [Z',] and [V] are the Scatterer 1 matrix elements

in the absence of Scatterer 2 as defined by (9), (10), and Fig.

E2(1,) = 2 • .2 ds" (15) 2. [Z s 2] and [Vs'] are perturbation terms which account for
S the fields scattered from Scatterer 2, and are given by (19),

2 (20), with the superscript 2 replaced by S2.
where G2 is the dyadic Green's function for Scatterer 2. C In some cases, it is advantageous to split the impedance
is similar to ?0in (5), except the electric current element is matrix into its free-space and scattered components, as
radiating in the presence of Scatterer 2. shown in (22). This isa resultof the fact that it i almost always

Equation (14) must now be solved for 1h. We begin by easierandfastertoaccuratelyfindtheelementsofZ0 1 ]than
expanding 11 as those of [Z 2] or [Z S2]. In many problems the free-space com-

N, ponents will be much larger than the scattered compo-
I1 = Y, I. (16) nents. lnthiscase, itiscomputationallyefficienttofirsteval-

n = I uate the elements of [Z 111 with high accuracy and relatively
This expansion is identical to that in (6), except that we little CPU time, and then expend as much CPU time as is
include only the first N1 basis functions on Scatterer 1. Sub- reasonable to evaluatethe elementsof [ZS2]. If, for example,
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a typical element of IZ'21 is about 10 percent as large as the storage locations are required for the impedance matrix ((N'
corresponding element in Vilt ,1, then a 10-percent error in + N)/2 for a symmetric matrix), the MM/Green's function
evaluating that element in (Z 21 will result in only about a solution requires less storage, especially if N2 >> N1. By the
1-percent error in the corresponding element in [Z11. Thus same argument, the matrix solution time is less for the MM/
one (-an save considerable CPU time by requiring only mod- Green's f unction solution. The CPU time to compute a sin-I
est accuracy in the computation of those elements of (Z'j. gle element in an MM/Green's function impedance matrix
The split shown in (22) is espec ially advantageous when generally requires more CPU time than a correspondling
treating the singularity in the self-impedance (i.e., in - n~) element in a MM impedance matrix. This is because theI
terms, or other terms where the expansion and weighting elements in the MM/Green's furnction impedlance matrix
functions physically overlap. Since this singularity isentirely involves the relatively (omplit ated S atterer 2 Green's,
in IZ',1,, the split in (22) allows one to analyze the singularity function. In both ( ases, the total CPU timne to ( ompute tir

with the relatively simple free-space Green's function, and fill thel impedance matrix is, proportitonal to N2. However.
not the more complex S atterer 2 Green's function. An if N >z> N1, then the CPU tirnle tot(irnput(' the N elemnents
exc eption would be if Sc-atterers 1 and 2 touch at an edge, in the MM/Green's function inipedam e matrix will usually
ort ornerof Scatterer 2, in which case Gs'would be singular be less than the CPU time to) tompute the (N, + N.,)2 ele-
at the attachment line or point, respectively. Treatment of ments in the MM impedlance mnatrix.U
this singularity in G51 is highly problem dependent, and is

beyond the st ope of this tutorial paper. IThe split shown in 1. The Matrix Green's Itunction
(22) is also natural for the MM/(; r method where the ray

piture ot the Si atterer 2 Green's funt tion expresses the As mentioned above, the MM and MM/(;rt't''s tun( lion
tields as the sumn o! an in( (lent ray plus several s altered solutiiins produw' essentially the samne result for [/,I. tt tol-
or dliffrat. ted rays. A further prat tical advadntage of ttie split lows that there most he a very ( lost' relationship between

in (22) is that (omputer programs (or the evaluation ol the MM matrix equation (11) antd the MM/( reen's tun( tionI
[/7,1 and I V',) may already be available. We (aolion that there matrix equation (18) or (22). We will nlow otiltin this rela-
art' instant es where . ertain elements of [Z',1, areaclmotst the tion,,hip lv (asting (8) intoian order N, matrix equation for
nlegative ot the ( orresponding elemnents, of [Z'21, making 11,1, and then (omparing the result to (22).
the split in (22) a numerically unstable method of ton- As illustrated in fig. 2, th(' MM matrix equation (8) is%
poling I/- 1(521, (771. equivalent toi the coupled matrix equLations

1). A~ ( imilmnston Between the MM and MM/Green 's711 /111 r'i11
I tit I( ion oioions 7711, I1I/.1 I IV,1. (24)

irst (onsider the basi( at toraty of the MM and MM/ Left multiplying (24) by /7I/'j'yie'lds
(Iret'ns tun( tion solutions,. the basic Integral equations onI'l/ /7I, 4l 211
whit hIhe lt MM antd MM/Glreen's tun( tiont solutions are
based art' both t'xar( t. I both methods use the same N, 1/111'V1 25)
ixpansion and] weighting tuni tions onl St atter('r 1, antI] thel II we no1w solitrat 1(25)f from 12 1), the 111 term,, an el leaving
exat I( ,reens, IL(lOl is, usedl in the MIGrt'en's funtlion the order N, mnatrix e'quatiton for 11,1
siilutiiiri then in the limit as N, andI N ' c, bo0th solutions
should in print iple yield the exat I result. I or the ise of (147,1 1/1/2 1,)1 1 1V71 I/21 V,. (2o)
tinifte N,, but1 Ii the limit as N , - 0, both Solutions should After (26i) has been solved tfor 11,l, then (1,1 tanl he ubtairitil
prii(v the' same approxima~te' result. In pairtt( ular, the N, from (24) asI
t'ltmt'nt' ot (/,I in (18) shoiuld bet ideriti( al I() the tirst N, ete-
inents is [11 to (8). H-owever, Ii pra( lit eN, ,niot N ,will both Il1/2 .1 IVI V.1 /,11',I- (27)
be1 finite, and] the two solutions wilt yi(eld somiewhat dit- omparisto with 122) shows that (2(i) is, iol Olt' bun (it n
t'ret'n re'solts. I hi' most ai o rate mithtit is tht' one with MM/Green's toot tion soltion, wht'rt' tthe pt'rturbatiiin
tht' most at( iirate mlodel of ',t attt'rer 2. the MM solut iton t'rnis, aoLst'd by St attert'r 2, are' given by
t'mplovs an MMk nit utllof St attt'r'r 2. while the MNA/(ret'n's
buntlion method employs thte St attt'rer 2 ( ,reen's font lion. 1' /1/7 1/ (28)
It tht' exat I Sutaltrvr 2 (I*re'tn 's toot lion is tusedt (antd wt'
assuit'e that it taIn be ('valuaitedt 'xat tly), then the MM/ V 2  1/1/1 17.
(,re't''s hoim lion soilution will hit the trIs at( torate. How- I/ "IantI IV'"l in (28). 129) art' ot iotlit ail lto thouse' in (22),
tVelI, it An apprtitmatt' (,rt'en's, tuit lion is used, then tht' sot e difftrnt models ,irt' being iis't itir 'm ,itttrer 2. Ini
MM/( .t't'i's tni tioin soIl~oiirmy m10t bet as at turaltt is print ipt', tht'y will bet onivi iteltoitat it the' 'sit t (,rt'tn's
Ili' MMA stioltion. to this Ist', tht' rt'lativt' ,It urat y will font tion is, used totiput (/il0 '-'I aiind IV"I inl (221,and it N.
tluiu'nIt uotn tbt', at irmity tif tht' approuximate' Ist atttrer 2 o' basis toottitins art' tiset't modeittl st( ,ttv'ntr 2 in tht'
(,rt'tn's tunttitmn amnd tin the nurmbier ot tiasis fullitlions N, t'valoatitnof (20). fotr tinitt' N,.tuorsrn geeet
o (ttl i Olt' MM nmodel It St,iatt'ntr 2. in t ht'st equtill,tis will beajipruxiniately t' saiint. tn tither
.N#'sl t o)isitr tilet ( VU nit' andI sttiragt for the MMi antd ast'. (26) an it'b titerptt'tu'tl ,is ,NJMI( ,rv'tn's tootctiin

MM/(.rteen's o hutin solutiton,,. the MMA solution four tht' siltitinl itor tb't Urrt'iti til lSi attert'r 1. l~iowi'vtr, Ili'Gren'un'
Iurrei'n tin i ttt'rt'rs I and 2 involves ,in tordt'r N N, i tull( titioin t lit i tit ofi mlfix~i ratht'r than a tuinttitinal
N, niatrix equtatioin, whilt' tht' MM/( .retn', fullt liorn sou- expresson. t hus,, wet (anl ltitst'ly rtefter tto17I/~l~/, as
titi iniviilvt's ,i oirrder N N, matirix etulaion. sint t N" a rmatrix .reen's tiit litin tor St( ,itt'rr'2, slot I it is, a Ioni-



plete dest ription of the scattering of electromagnetic waves into (27) to find (121. These operations are relatively fast, as
from Scatterer 2 due to the source currents modeling Scat- compared to computing and inverting [Z221 , since they
terer 1. The advantage ot the matrix Green's function is that involve only matrix multiplications and the solution of an
it can be obtained for any Scatterer 2 geometry for whit h order No matrix equation.
a standard MM solution for Scatterer 2 in free-spat e is avail- 4) With the current on the dipole and airplane known,
able. Employing (26), with the matrix Green's function, is the computation of the dipole input impedance and far-
similar to Glisson and Butler's use of a numerical Green's zone radiation patterns is straightforward and fast. If the
function to analyzea wire antenna in the presenceof a body pattern and input impedance meet specifications, then
of revolution (BOR) [671 and to Harker's matrix partitioning stop; if not, go back to step 2.
method [681. The advantage of the above procedure is that the most

The following physical interpretation can be made for the time-consuming part, i.e., the computation and inversion
matrix terms in (26): of [ZO2 ], is done only once, regardless of the number of

. [Z''1[I1 is the eletric field incident upon Scatterer 2 dipole lengths and locations which are analyzed. Steps 2-

caused bythe currenton Scattererl radiating in free-space. 4 may be fast enough to be done interactively.
[Z,][ '[Z", 1 1[,1 is the urrent induced on Scatterer 2 by As an aside, if the dipole was a monopole which con-

the above incident field. tacted the aircraft, then the MM model for the monopole
[ZS21 = E1'11Zi [Z : III is the electri( field inci- on the aircraft would contain an attachment mode at the

dent upon Scatterer I caused by the above current on Scat- wire to surface junction point 1781, [79]. This attachment
terer 2 radiating in free-space, i.e., this term accounts for mode is used to enforce continuity of current at the wire/
the ( oupling between the currents on Scatterers I and 2. surface junction and involves currents on the wire and on

S['.,I'I lV'] is the current induced on Scatterer 2 by the the aircraft surface. In the MM/matrix Green's function
original in( ident field, (E", H'0 ). solution, the attachment mode should be (onsidered as part

[V'21 , [t',IIZ'!,] '[V']J is the electric field incident of the wire or Scatterer I.
upon S atterer I (aused by the above (urrent on Scatterer
2, i.e., this term a(tounts for the perturbation in the electric III. MM ANi) MM/GK iN's FLJN( II)N EXAMI'IfS

tield in( dent upoin Scatterer 1 aused by the prese( e of This section presents MM and MM/Green's function
A o atterer 2. solutions to the two-dimensional problem of TM scatteringmAitho g e funtun(tionreageraallyequien ithe by a perfectly conducting semicircular strip in the presence

matrix (Gren's lunttion are algebraically equivalent, there of a perfectly conducting circular cylinder. I he strip will beiri tini W nhGeScatterer 1, and the cylinder will be Scatterer 2. As illus-(an redut v the (PU time. A pra( ti(al example would be a trated in Fig. 3, the cylinder has radius a, and the strip is atparameter study to lind the length and lo( ation of a dipole radius b and extends over the angular range -, < 0 _ ,.
i an irplane in order to obtain a pres( ribed input imped-

ani , and/i r radiation pattern. Io ilve this design problen
we analyz'e dipoles o various lengths and locations on the
airplane., Lniil a length ,afId l(i( atiOn i,, found whir h rneets
the pattern and impedant I, espe( iI( ations. In the MM mniodel P E'0  .
ut the dipole and the airi rail, the number ot unknowns 0

-ed'd ti modthI the airp~lane w(;uld far ex( eed that needel b

tnr the dipole, It we lel the dipole be Y atterer I and the CIRCULAR STRIP

lirplani 1( altirer 2, this problem is an ex elent tandidate
tor tin Ni,( ,rven's tin tuion solliiin sin( e N -, >> N. Using
Inhn wire and ,surta( v pal h modeling ter hniques, a stan- CIRCULAR CYLINDER
lairl NiNM solutioin tf the dipole in the pre,,en( e ot the air- Fig. 3. (;i'()etry l(ira I M piane wav' t itint i pon ii a tr

pin'm, is ivadii ,' [78l ! iivwevir, this t'N + N., b |asis tunt - th-i ity ( <nlut ting siolni inrt lir strip in 11 ot-, I r ut' ,' -i per-

tion M.M 'oiliitioin w li liie-( onulming, esp(-( Ially t,-i fly (ondu( 1ng ( Ir( utlar ( vinder
ill( I' it would a , ti be repiated for many dipole- Iengths
Indl lht ations I hi MM,(,ri',,es tuni lion soluti(on, with the in( ident field is the plane waveI ii1irix ( ,r'i' , tuni tion, an (lalniati( ally rerut e the ( Pt
lni tor ih1- sC( ni ,FInd sulsetent runs In the parameter E'0  

' (30)
Jtiily ht ih h llow ng fur step pr( edure: in( irent from the + x axis. F or this proble m, all le( tri( fields

li and ( urrents will be polarized. I hus bor simplit ity, in this
t r the. arplin - in Irve spai -. then ( ompule / ' ' ! I (and se( tion we will drop the ve( h r nitaton, an di the i (om-
,timr# it IIn the IiI( alitris originally used tor ['l!l). For large ponent is understood the solution to this problem is pre-

i. this i an II, ,a very irne- ( onsumning pr( ess. However, swnted using:
It Is trIil1 ili' o() v-, anti lith remainder ot the ( ompulation
i anoii h sl, 1) a straight MM stolutioin,

21 N,'Xt 1 ,| V hlot allot) and length i,, ( hosen and the 2) an MM/( ,reen's un(tion solution with a matrix
Ii,iri vs I/','1. areamd "j ,r (( putld. lh' (PU time (,leen's un( tlion,
I), miipiti. tles' three iami eswill be mu( hle% than that i) an MM/(1reen', fun(littn solution with an exa(l
to in mrpult- 1/'"., sin N. . N, the vetors IV',] and (reen's fuin( lion,

"I , ,1ar' ikf i mputeld. 4) an MM/( ,reen's tun( tion solution with a (IlI) (gen-
Ii 1 tlitirin (26) is ,)lve(l for I1,[, whi IT then is inserted metric al opti( ) (reen's fun( titin.

I ?'i' Pi ( ( III)IN(,S 0t tlt Ittt. Voil 7h, Ni) 1. MAR H 19119M



All computer CPU times are for the VAX 8550, which is 6 I
about five times faster than a VAX 11/780. Also, by CPU time
it is meant total CPU time, i.e., matrix fill and solution time. 5 6

Although the matrices for this simple example have the Toe-
plitz property, we did not use this property in our solution 4- STRIP REP. BY

so that the CPU times would be more typical of most prob- E

lems which do not have Toeplitz matrices. I 3 E

A. MM and MM/Matrix Green's Function Solution
2 0

The MM solution for TM scattering by a perfectly con- CYL RE. BY N2

ducting cylinder of arbitrary cross section is well known [11], , s 2

and the particular solution employed here is based upon
that of Wang [801. As illustrated in Fig. 4, to implement the a I _ I I I I -4

MM solution, we make a piecewise straight approximation 0 25 50 75 100 125 Io 175 200

to the circular cylinder and strip. To obtain reasonable N2

Fig. 5. The MM or MM/matrix Green's function solution for
the center current of a circular strip in the presence of a cir-

STRIP MODELED AS cular cylinder versus N2 = the number of basis functions on
N, STRAIGHT SEG. the cylinder.

S L. z N, inder. Numerical experimentation showed that N1 = 3 basis
.functions on the strip results in a reasonably well con-

verged result, and this will be used in all computations to
follow. As is typical of MM solutions, as N2 increases, the

strip center current density converges, in this case to about
5.45 at an angle of -2.8° mAim. About N2 = 100 basis func-
tions are needed on the cylinder to obtain a reasonably con-

b JNI-N J, verged result, which corresponds to a segment size of about

0.063X. The computer CPU times for the MM solutions in
Fig. 5 are shown by the solid line in Fig. 6. The CPU time

50 2 5

CYLINDER MODELED AS N,
SIDED REGULAR POLYGON

Fig. 4. For the MM solution, a piecewise linear approxi- 40 / 2 O
mation is made to the strip and tylinder contour in Fig. 3. /

MM/MATRIX GR F /F 1

results, the width of the straight segments should not 30 /- 15
exceed X14, with X/10 being typical. If we denote the strip
as Scatterer 1 and the cylinder as Scatterer 2, the strip is /
modeled as N, straight segments of equal length and the 0 /0
circular cylinder is modeled by an N2-sided regular poly- /
gun. Referring to (6), the expansion functions are the piece- / 2

wise constant or pulse functions / 210i / 0 52

J 11d,,, n = 1, 2, ,N = N, + N 2  (31) - MM

which are numbered so that the first N, are on the strip
(Scatterer 1) and the last N, are on the cylinder (Scatterer 0 0

0 .50 00 oo 50 200
2). he width of basis function n is denoted d. The weight- 00

ing functions are chosen identical to the expression func- NZ

tions, i.e., w_ = /,,. This is referred to as a Galerkin solution, Fig. 6. The CPU time on a VAX 8550 for the MM and MM/

and results in a symmetric impedance matrix. The MM matrix Green's function solution to the geometry of Fig. 5.

matrix equation, given by (8)-(10) and illustrated in Fig. 2,
(an then be evaluated using computer subroutines sup- is roughlyproportional to(N2)2, and about 10swere required
plied by Wang [80]. for the N, = 100 basis function solution.

(onider the spe ific example of a circular cylinder of The MM/matrixGreen'. function solution, defined by(26),
radius a = X, and a strip with radius b = 1.01 and angular isalgebraicallyequivalent tothestraight MM solution.Thus
se( tor 2d , -10'. The radius b is chosen slightly larger than the data in Fig. 5 also applies to the MM/matrix Green's

a to emphasize the (oupling between the strip and the cyl- function solution. The corresponding CPU times for the
inder. For this geometry, Fig. 5 shows the magnitude and MM/matrix Green's function solution are shown by the
phase of the ( urrent density at the center of the strip versus dashed line in Fig. 6, and are considerably less than that for

N2 = the number of basis functions used to model the cyl- the straight MM solution. It is important to point out that I
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these times do not include the time to compute and invert STRIP SEG INTO
[ZO2]. If a series of problems is being run using the MM/ N1 MOOES

matrix Green's function formulation, with the cylinder fixedI but with the strip geometry being varied, these CPU times JR(,t-

would be for the second and subsequent runs. Also, if a
large number of runs is being made, then these times rep-
resent the averageCPU timeforeach run (including the first a b
run where [Z221 is computed and inverted). *mI _

B. MM/Exact Green's Function Solution CYLINDERs

This section describes the MM/Green's function solution Fig. 7. For the MM/exact Green's function solution the
to the problem of Fig. 3 using the exact eigenfunction cyl- semicircular strip is segmented into N, smaller semicircular
inder Green's function. We begin by presenting the exact strips corresponding to the MM basis functions.
eigenfunction representation of the cylinder Green's func-
tion. Consider a unit amplitude line current located at the ments in the MM/Green's function impedance matrix.
source point with cylindrical coordinates (p', 0') and radiat- Referrina typicalreen t in oureae i x.
ing in the presence of a perfectly conducting circular cyl- Referring to (19), a typical element in our case is given by
inder of radius a which is I .ated concentric with the z axis. r
The total field of this line source at the field point (p, 0), i.e., Zn= E 2(jn) mb d =
the cylinder Green's function, is given by [7]

m, n = 1, 2,"' N1 . (39)
,; P", ') =C p- fpFp(p, p') COS p( - ¢) (32) Here E2(Jn) is the electric field cf expansion function n,

located on the semicircular strip, and radiating in the pres-
in which C = -k 2 /4O, cp 1 if p = 0 and op= 2 if p # 0, ence of the circular cylinder. E2 (in) is computed by inte-
and grating over expansion function n the product of Jn and the

Fp(p, p') = Hp(kp>)fBp(kp<) + cpH )(kp2 ] cylinder Green's function

F-p(p, p') (33) E2(J,,) = J, (o') G2 (b, 0; b, o')b do' (40)

Bp(ka) (4,
H b(ka) -3 in which we have set p = p' = b since in our case the source

and field point are on the strip. Recognizing that J(') is
p, = the minimum of (p. p') constant for o, _ 0 !50n2, and inserting G2 from (32) into

P> = the maximum of (p, p'). (35) (40) yields
4'

n2

Here B p denotes the Bessel function of the first kind and E(Jn) = CJb XpFp(b, b) cos p(O - 0') d&. (41)
H denotes the Hankel function of the second kind, both p o-

of order p.
If the same cylinder is illuminated by a unit amplitude Equation (41) can now be easily integrated to yield

plane wave incident from the +x axis (30), then the total
field at (p, b) is E2 (],) = CJ, b o EpFp(b, b)

E'
2 =  Dp(p)e" p  (36)

In hi-h [sin p(o - 0,1) - sin p(o - 0n2)], p * 0in which

Dp(p) = (-1 )-P[Bp(kp) + cpH(2(kp)]. (37) (On2 - i), P = 0.

While in the MM solution it was convenient to make a (42)
piecewise linear approximation to the curved cylinder and Z is now obtained by inserting E2(Jn) from (42) into (39).
strip, when using the above eigenfunction expansion of the A, in, in t ain e as ily d o m yield in
fields, it is advantageous to retain the true circular nature Again the ;ntegrations are easily done yieldingI of the strip. Thus in Fig. 7 the semicircular strip is shown 2
segmented into N, smaller semicircular strips. Each of the Zn = -CJmJnb 2 Z V F(b, b)
N, smaller strips corresponds to a piecewise constant basis P O

function. The current density on expansion function n is 1
given by - [cos P(0rnl - Onl) - COS P(Orm2 - 0n1)

1

J = b(O -On) On -< 5 - 2 '  (38) - cos P(Omi - 0,2) + cos P(0, 2 - 0,01,

I Again we choose the weighting functions identical to the P 0
expansion functions, i.e., wm = I..

We now show in some detail the evaluation of the ele- (4,n - On2)(OmI - Om2), P 0. (43)
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Similarly, from (20), the elements in the voltage vector are the solution to the problem of Fig. 3 using the MM/Green's
function technique with a GTD Green's function.

V2= 2 b d , m = 1,2,-*-, N,. (44) GTD Green'sfunction isdescribed with the aid of Fig.
M 21, b'. 8, which shows a unit amplitude line source located at (p',

2') and radiating in the presence of a perfectly conducting
Inserting E'2 from (36) into (44) and integrating yields cylinder of radiusa. In describing the field of the line source

V2 mb D2 D(b) pI
SOURCE PT.{-(e JP e jpm) p*O0A~o, S

( ep ( 4 5 ) A TIu -
(M2- 0m1), p = 0. -- DIRECT RAY

The ability to carry out the integrations in closed form for
the elements in the impedance matrix and the right-hand-
side vector is typical for problems where the surface of Scat-
terer 1 is a constant coordinate surface for the functions / F

being used to expand the Scatterer 2 Green's function [211, REFLECTED

[231, [541, [811. RAY

Although (43) for the Z'M is in a relatively simple form, Fig.B. The direct and reflected rays used in the GTD Green's
a numerical problem arises in that the self-impedance terms function for a line source in the presence of a circular cyl-

(i.e., m = n) are slowly convergent. Referring to (22), it is the inder.

[Z°11 or free-space part of [Z2 ] which is slowly convergent
when basis functions m and n are electrically close. For this it is assumed that the field point (p, 0) is in the lit region,

reason, it is numerically efficient to evaluate [Z",] separately i.e., a line or ray from the source point to the field point does

as in a conventional MM solution for the strip in free-space not pass through the cylinder. It is also assumed that ka I
[1], [801. The problem then remains to evaluate (ZS 21 using >> 1 and that the source and field point are not too near

the eigenfunction expansion of (43). Fp in (33) and DP, in (37) the surface of the cylinder. In the lit region the total field

both contain a factor of the form [Bp + cpH'21. The term pro- is dominated by two rays, shown in Fig. 8 as the direct ray

portional to B, corresponds to the free-space field, while and the reflected ray. The field of the direct ray is simply

the term proportional to c ,H") corresponds to the scat- the free-space field of the line source. The reflected ray

tered field. Thus referring to (22), the Bp term contributes propagates along a straight-line path of length s'from the

solely to [Z,I and [V' , while the cHM term contributes source point to the point Q on the cylinder, and then along
1 bP e t nd(45) a straight-line path of length s from Q to the field point. Thesolely to°[Z "Iand[02).It can then beseen that (43) and(45) ponQisdfed thrquemttathengeoin-

can be used to compute Z 2I and [V5 21, respectively, by pointQisdefinedbytherequirementthattheangleofinci-
omitting the BP term. dence ct' is equal to the angle of reflection, a. Then, using

For the problem illustrated in Fig. 5, the N, = 3 basis func- the notation of (21), the total field of the line source is [821 I
tion MM/exact Green's function solution yielded a current G2 = Go + GS2 = CH~O2 (kd)
density at the center of the strip of 5.9 at an angle of -2.7 °

mAim, which is very close to the MM solution for N2  100. P e

This MM/Green's function solution required only three - CH121(ks') J' e (46)
unknowns and 0.11 s of CPU time. As compared to the N, P+S

= 3 and N 2 = 100 basis function MM solution, this is about where d is the distance from the source point to the field
a factor of 100 reduction in CPU time and 1000 reduction point, C - -k 2/4we, and I
in matrix storage requirements. As the cylinder size 1 1 2

increases, the relative advantage of the MM/Green's func- 1 - + (47)
tion solution will also increase. Although the reduction in p I' O cos of*

storage is a general characteristic of MM and MM/Green's Similarly, the field of the plane wave of (30) in the presence
function solutions, the reduction of CPU time is not. The of the cylinder can be written as
fact that we could carry out the integrations in (39) and (44) V2 = Ea + E 62
in closed form greatly reduced the CPU time for the MM/ + e l

Green's function solution. For most MM/Green's function - - U
solutions these integrations must be done numerically and - elk" , p elk, (48)
can be very time-consuming. In some cases, the CPU time P +

for the MM/Green's function solution can actually exceed where p' and xo , the x coordinate of point Q, are evaluated I
that of the straight MM solution. for a source point at (p' = -, 0' = 0).

C. MM/G Green's Function Solution eferring to (22), the first term in (46) and (48) contribute
Mroto Z] and [VI], respectively, i.e., they result in the MM

Using the GTD to obtain the Green's function greatly matrix elements for the strip in free-space. As described

expands the range of problems which can be treated via above, they are evaluated using computer subroutines
MM/Green's function techniques. This section describes developed by Wang [801. The second term in (46) and (48)
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i contribute to [Z82] and [v 2], respectively. These elements 140 ---- -. 4

are evaluated by inserting G5 2 from (46, into (39) and (40),
inserting ES2 from (48) into (44), and performing the inte- 120 -b -,aO+ X 1 2

grations numerically. For this simple example, requiring N,= 3 N2 100 a/Sk MM

only one ray, these integrations are very fast. However, for too 10
a more complicated Scatterer 2 geometry, more rays would U

be required, and the CPU time needed for the numerical 80 I VMM/EXACT - 0,8
integrations would increase. . GREEN'S F

The insert in Fig. 9 shows a semicircular strip located 0 6

X/2 above a circular cylinder. With N= 3 basis functions Z 60/ 06

40. 0.4 UVi

20 1-1-4 02 2
I MM/GTD

." GREEN'S F_

0.1 1 10 100

b + X/ Fig. 10. The CPU times on a VAX 8550 for the data in Fig.
E 2b Os .0 5, X 9 computed by the MM (dashed curve) and by the MM/

N1. NI3 N2  • 100 a/,\ Green's function methods (solid curves).

o E'° This paper describes a technique for combining the MM
and Green's function solutions in electromagnetics. The
fundamental difference between the standard MM and MM/
Green's function solutions is in the application of the equiv-

001 alence theorems used in obtaining their respective integral
0. 1.0 10 100 equations. In a standard MM solution all matter is replacedI by free-space and by equivalent currents. These currents

Fig. 9. The magnitude of the center current for a semicir- are then found as the solution of an exact integral equationcular strip located XI2 above a circular cylinder, computed whose kernel contains the free-space Green's function. By
by the MM, the MM/exact Green's function, or the MM/GTD
Green's function methods. comparison, in an MM/Green's function solution some, but

not all, matter is replaced by free-space and by equivalent
currents. Again the currents are found as the solution of an

on the strip, Fig. 9 shows the magnitude of the current den- exact integral equation, but now the kernel contains the
sity at the center of the strip versus aIX. The angular sector Green's function for that portion of the matter which was
of the strip is adjusted so that its width remains constant not replaced by free-space and equivalent currents. Both
at 2bo, = 0.15X. This data was generated with the MM, the integral equations are solved by transforming them into a
MM/exact Green'sfunction and the MM/GTD Green's func- system of simultaneous linear equations, i.e., a matrix equa-
tion techniques, and essentially the same results for the strip tion. The advantage of the MM/Green's function technique
current were obtained by each method. For the MM solu- is that the number of unknowns, and thus the order of this
(ion, N, = 100a/X basis functions were used on the cylin- matrix equation is reduced. This results in a reduction in
der. The stripcurrent in Fig. 9goes to zeroasa/X - o since computer storage and, in most cases, CPU time.
the direct ray cancels the reflected ray on the strip, causing The number of problems which can be solved by MM/
[V] -- -[V' ' ] and thus [V 2] - 0. The CPU times for these Green's function techniques can be tremendously
three methods are shown in Fig. 10. Note that the left scale increased by not requiring the Green's functions to be exact.
applies for the MM solution, and is 100 limes as large as the In particular, using the GTD one can obtain the Green's
right scale which is for the MM/Green's function solutions. function for a geometry as complicated as an aircraft. This
Fora/X > 1, theCPU time for theMM solution is twoorders is referred to as an MM/GTD solution [55].
of magnitude or more greater than that for the MM/Green's It is shown that, by manipulating the MM matrix equa-
tunttion -,olutions. The CPU time (or the MM/exact Green's tion, a standard MM solution can be put into the format of
fun( tin solution increases as a/X increases, since more an MM/Green's function solution. This is referred to as an
term- nitist be retained in the eigenfunction summations. MM/matrix Green's function solution. Such a solution is
By comparison, for a/X > 1, the CPU time for the MM/GTD algebraically equivalent to the standard MM solution, and
Green's function solution is essentially constant at 0.25 s. can be obtained for any geometry for which a standard MM

As (ompared with the MM/exact Green's tunction solu- solution is possible. The advantage of the MM/matrix
tion, the advantage of the MM/GTD solution is that it is Green's function solution is that it is faster than a standard
appli(abletoa far wider class of Scatterer2(in this example, MM solution if a series of problems is being analyzed inIylnder) geometries. As compared to the MM, the advan- which only a small portion of the problem geometry
tage of the MM'GTD solution is that it is much faster and changes from one run to the next.
requires far less computer storage as the electrical size of In order to illustrate the MM/Green's function method,
S(atterer 2 increases. and to compare it to a standard MM solution, the problem
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TM Scattering by an Impedance Sheet Extension of
* a Parabolic Cylinder

EDWARD H. NEWMAN. SENIOR MEMBER. IFEE. AN!) JOHN L. BLANCHARDI
I bstract-An integral equation and method of moments (MD elements in the MM/Green's function impedance matrix and

solution is presented for the two-dimensional (21)) problem of the right-hand-side vector involve the parabolic cylinder Green's
transers. magnetic (iM) scattering b% an impedance sheet extension of a function, as opposed to the much simpler free-space Green's

perfecll. conducting parabolic c)linder. First an integral equation is function in a conventional MM solution. The MMIGreen's
formulated for a dielectric c linder of general cross section in the presence

(if a perfectl, conducting parabolic cylinder. It is showsn that the solution function solution is especially advantageous here, since the
for a general dielectric c linder considerabl) simplifies for the special case parabolic cylinder is one of the few shapes for which the exact
of TM scallering b% a thin mullilayered dielectric strip which can be Green's function is known. However, an entirely new aialysi.,

represented as an impedance sheet. The solution is termed an MM/ would be required to treat the impedance sheet in the presence
(Green's function solution where the unknowns in the integral equation
are the electric surface currents flowing on the impedance sheet, and the Of a cylinder of other than parabolic cross section.
presence of the parabolic c)linder is accounted for by including its Section II begins with a derivation of the MM/Green's
Green', function in the kernel of the integral equation. The MM solution function volume integral equation for a dielectric cylinder of
is briefly reviewed, and expressions for the elements in the matrix general cross section in the presence of a perfectly conducting
equation and the scattered fields are given. Finally. sample numerical parabolic cylinder. By a small extension of the methods of
results are presented. Harrington and Mautz (51, Senior 161. or Andreason 17J, it is

I. IN ROMIC I IoN shown that for the TM polarization a thin multilayered

T HIS PAPER will present an integral equation and method dielectric slab can be represented as a sheet impedance, and

of moments (MM) (II solution to the two-dimensional the volume integral equation reduces to a surface integral

(2D) problem of transverse magnetic (TM) scattering by an equation. Next the MM solution for the impedance sheet in the

impedance sheet in the presence of a perfectly conducting presence of the parabolic cylinder is presented. Finally,

parabolic c linder. Previously. the authors have presented an numerical results are shown which illustrate the accuracy of

MM solution for a material cylinder in the presence of a half- the method and also show sample results for the echo width

plane 121. 131. The previous solution could be used to study and the electric field on the impedance strip.

.scattering by a material coated knife edge. The present il. TiF INTEGRAl+ FQuAIN
solution represents an extension or generalization of that
solution in that the parabolic cylinder can be used to model a A. The General Dielectric Cylinder

thick ede. This section will develop an integral equation for the 2D
The method is based upon an MM solution of the integral scattering by a dielectric cylinder in the presence ofa perfectly

equation for the electric surface currents representing the conducting parabolic cylinder. We will be brief, since the
impedance sheet. The solution is termed an MM/Green's derivation exactly parallels that for a dielectric cylinder in the
fu,:rion solution 141 since the presence of the perfectly presence of a half-plane 121, 131. Fig. I(a) shows a perfectly
conducting parabolic cylinder is accounted for by including conducting parabolic cylinder, with its focus on the z axis. If
the parabolic cylinder Green's function in the kernel of the we denote the focal length by F, then the surface of tbe
integral equation. This can be compared to a conventional MM parabola is given by
solution where one would solve for the electric surface
currents rcpicsc ,ting the impedance sheet and the parabolic
cylinder. The advantage of the MM/Green's function tech- The parabolic cylinder coordinates Q. )7, z) arc related to the
niquc is that the unknowns in the MM solution are limited to rectangular (x, y, z) coordinates by

t c surlace occupied by the impedance sheet and do notIxphcilly include the current distribution on the parabolic I
cslinder. The disadvantage is that the evaluation of the x=- (Q 2 - 172 ) v=,i, 7 z7, (2)

Manu,,ript rce:cived March 18. 11)87 revised Septemher 17. 19X7. This and to the (p, 0, z) circular cylindrical coordinates by
'.rk ., upp4,rted bh the Joint Service Electronics Program under Contract

N(N(1W14 7 ('(49 with The Ohio State University Recarch Foundation.

l- H Neskman is %,ith the Department of Electrical Engineering. The Ohio
State ( nierit. 132(0 Kinnear Road. Columbus. OH 43212 osp c + -- = 17 21) sin - . z = z. (3)
J . Blanvhard i% vith the Department of Mathematics. The Ohio State 2 2I [ncrit,. 231 W 18h Avenue. Columbus. OH 43210
IL.I' Numher 971164 In terms of the parabolic cylinder coordinates, the surface of
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DIELECTRIC CYLINDER space the incident electric field at (x, y) is

/ E'0 = exp [-jk(x Cos o+y sin 0o)] (7)

(ETNHT) t$o~f * PARABOLIC where 450 is the angle of incidence measured counterclockwise
F CYLINDER from the positive x axis and k = 2r/X is the free-space

(Mo, 0o) wavenumber. In this case all electric fields and electric

currents are i polarized only, and the vector equations (5), (6)

'7 = 7? reduce to scalar equations, applying to the 2 component. For I
this reason we will henceforth drop the vector notation, and it

(a) should be understood that we are referring to the component

of all electric fields and electric currents.

-B. The Impedance Sheet Approximation

ET PA In this section we will show that for the case of a thin
-HT) I y CYABOLIC inhomogeneous dielectric slab, (6) for the volume current J

F IE can be reduced to a simpler equation for an equivalent surface
- current J. Fig. 2 shows a thin dielectric slab of thickness T,

which, for convenience, is oriented parallel to the x axis. The
'7= '7, slab is shown having two layers of thickness T, and T2 and

(b) permittivity E, and E2, respectively. This represents a geometry

Fig. 1. (a) Geometry for dielectric cylinder in presence of perfectly of practical interest. For example, layer I might be an

conducting parabolic cylinder. (b) Dielectric cylinder is replaced by free- extremely thin lossy material (commonly referred to as a
space and equivalent electric volume polarization currents, resistive strip [61), while layer 2 would be the dielectric

substrate on which the resistive strip is deposited. Below we
will generalize to any e(x, y) or T(x).

the parabola is the surface of constant 7/ To apply the sheet impedance approximation it is necessary

that the dielectric slab be sufficiently thin that the electric field
,7 = 'Iii. (4) is essentially uniform in the y direction. This will be the case if

Confined to the region R is a dielectric cylinder with jk, I T, + 1k2 j T2 4 1
permeability and permittivity (Mo, E). The dielectric cylinder w
may be lossy and inhomogeneous. The ambient medium is free where k e = boe is the wavenumber in region i.r
space with parameters (po, EO). The impressed electric and Following 'he above procedure, the layered slab is replaced
magnetic currents are denoted (JI, MI). All fields and currents by free-space and the equivalent volume polarization current
are two-dimensional (z independent) and time harmonic with J. Since the total electric field is assumed to be uniform 3
the e- ill time dependence supressed. We will denote (ET, H r) through the thickness of the slab, it follows from (5) that

as the total fields of the impressed currents in the presence of JJ2

the dielectric and parabolic cylinder. In the absence of the -- , (8)
dielectric cylinder, but with the parabolic cylinder, the fields Ac1  Ac2  I
of the impressed currents are (EI, HI).

In Fig. l(b). the volume equivalence theorem [1], [9] is where Ji is the value of J in layer i and Aci = kEi - (0).

used to replace the dielectric cylinder by free space and the If the dielectric slab is sufficiently thin, then the fields 1
volume polarization currents radiated by the volume current J will be approximately the

same as the fields radiated by the surface current
J= -jw(-eo)ET  (5) T

confined to the region R. We will let (El, HJ) denote the fields J, J dy= JI dy+ TI J. dy (9) U
of J radiating in the presence of the narabolic cylinder. In the
equivalent problem of Fig. I(b), the total fields are the sum of and located at y = T/2. Using (8), this becomes I
the fields of the impressed currents and J radiating in the
presence of the parabolic cylinder. Then using (5) we obtain J =IoJJs=A-- (r1 Ai + T2A 2) orJ =•(0

j c T1 Ac 1 + T2 Ac2 .I10

-El+ =E I in R, (6) 
I

-JE( - c) Using (10) and applying the approximation that the fields of J

which is the basic equation for J. It is an integral equation, are essentially the same as the fields of J, (i.e., El = E ys) to
since E) is an integral through R of the vector dot product of J (6) in layer I results in I
and the parabolic cylinder dyadic Green's function.

We now restrict the excitation to be a TM plane wave. In free - E Js + ZJ, = E( ) 3



I
NEWMAN AND BLANCHARD: IMPEDANCE SHEET EXTENSION OF PARABOLIC CYLINDER 529

T y

OR JOR E2  22 N-

L 

Z ( ( )

Fig. 2. Geometry for electrically thin two-layered dielectric strip. 17 77,

where the sheet admittance or impedance are given by Fig. 3. Impedance strip of length L is split into N smaller stops.

iwhere [Z + AZ] is the symmetric N x N impedance matrix,
Ys= l/Zs= -jo(TAej + T2Ae 2). (12) V is the N element right-hand-side vector, and I is the N

Equation (12) shows that the two layers appear in parallel. For element solution vector whose components are the unknown I
a slab with I layers, the generalization of (12) is in (15). Typical elements in the impedance matrix are given by

Z - E.Jsmdx (18)
I Y,= l/Z,= -jw 

Ti'Afi. (13)

where ET is the total ( component of the) electric field of J,
r aradiating in the presence of the parabolic cylinder, and the

function of x: integral is over Rm,. A typical element of the [AZ] matrix is

Ys(x)=Il/Z(x)= -jW 1rX) ((x, y)- o) dy. (14) AZmn=J ZsJsmJsn dx (19)

If Z, = 0, (11) is identical to that of a perfectly conducting where the integration is over regions Rm and R. Since we are
strip. For the special catie of a homogeneous slab, (11)-(14) using the subsectional basis functions of (16), [AZ] is a

reduce to the sheet impedance approximations of Harrington diagonal matrix whose typical element is given by
and Mautz [5], the resistive strip approximation of Senior [6),
or the very thin material plate of Newman and Schrote [8]. AZn ='W2 f Z,(x) dx. (20)

III. MOMENT METHOD SOLUTION
A. The MM Matrix Equation Note that AZn can be evaluated in closed form for any simple
AM Echoice of Zs(x). Typical elements of the right-hand-side vector

This section will present a pulse basis MM solution [1], are
[2] of (11), using the impedance sheet approximation to a
thin dielectric slab in the presence of a perfectly conducting V. EiJsm dx (21)
parabolic cylinder. The impedance sheet will be located on the
negative x axis. As illustrated in Fig. 3, the impedance sheet is
segmented into N smaller strips of width W,.. R, will denote where E i is the total electric field of the TM incident wave in
the region of strip n. The strips must be small enough so that the presence of the parabolic cylinder.

IJ

the total electric field and Z, can be assumed to be reasonably The numerical evaluation of the self-impedance terms in the
constant in each strip. The equivalent current can then be MM impedance matrix always presents a challenge. Accord-
approximated by ing to (18), to find Zn we must find the electric field of Jn on

N the surface of J, The integrand of the resulting integral will
JS in J. " 

(15) have a singularity which must be properly treated. To treat this

problem it is convenient to write the total field radiated by J.
(15 he sin gulaity 

hih utaera opylner 
tra te.Tsretti

where the I, are a sequence of N unknown coefficients, and in the presence of the parabolic cylinder as

the J are the N (j polarized) pulse basis expansion modes ETEO+Es (22)
defined by n n

within Rn where E ° is the free-space field of J., and Es is the so-called
J 0, otherwise. (16) scattered" field. Using the notation of (22), we can write

We employ a Galerkin I1I MM solution, with weighting [Z] = [Z°] + IZSI (23)
functions chosen identical to the expansion modes. In this
case, (I1) reduces to the matrix equation where [Z0] is the impedance matrix for the perfectly conduct-i ing strip in free-space and [Zs] is a correction matrix which

[Z+AZ]I= V (17) accounts for the field which is scattered from the parabolic
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cylinder. Using this notation, (18) becomes . y
z 0 z°+zs

= E Jm dx EsJn dx. (24)

The advantage of (24) is that the only singularities are in the n',7
integrands of the terms of Z° for which I m - n f :5 1. Fig. 4. Modes J,,. and J., in presence of perfectly conducting parabolic

However, since they involve the relatively simple free-space cylinder n = ni.

Green's function, they can be easily treated [10], [111]. By
contrast, the Z ,. involve the far more complicated parabolic j = .14 - (29)
cylinder Green's function, but contain no singularities. In a
similar manner it is advantageous to write (21) as

V,= V° + Vs />=the largerof( -2x1 , -2xf)

E'0J1 dx+ M EiSJM dx. (25) 7< =the smaller of(--'f--2x, --2 xf). (30)

Recognizing that G s is a separable function of x, and xf, the
The elements of Z and V,, are identical to the elements in double integral in (26) separates also, yielding (even for m = I

the impedance matrix and right-hand-vector for the perfectly n)
conducting strip in free space. Expressions and computer
codes for the evaluation of these elements are available [101. s =- D2(0) (-l)P + __I

In the next section we discuss the efficient evaluation of ZS , - - C I D)_-
and Vs.These both require the evaluation of fields in the

presence of a perfectly conducting parabolic cylinder. An A,(p)A,(p) (31)
excellent summary of such field expressions is given by
Christiansen 1121. in which

B. Evaluation of the Z' A(p)= . D,, 1 ( 2x a) dx. (32)

Fig. 4 shows a perfectly conducting parabolic cylinder with R
surface r7 = q I. On the negative x axis (Q = 0) are the strip The evaluation of the symmetric [Z s] matrix in principal
current modes J. and J,. ZS from (24) can be written as requires (N 2 + N)/2 evaluations of (3 I). However, it is more

1 r Idi efficient to recognize that the ZS are a separable function of
Zs --- - GS(x,, xf) dx, dxf" (26) m and n and evaluate the entire [Z s] matrix in the course of

W,,, ., n performing the summation. For each term p in the summation

where G"(x,, xf) is the scattered electric field at (Xj, yf = 0) one must numerically evaluate the N integrals A,(p), n = 1,
radiated by a unit amplitude electric line current at (x,, y, = 2, "., N. The result is that the computer CPU time to

0). Note that by scattered field we mean the difference evaluate [Z s] is proportional to N rather than N2.

between the total field radiated by the line source in the C. The Evaluation of the Vs
presence of the parabolic cylinder and the free-space fields of n

the line source. The following expression for Gs can be The elements of Vs,, are defined by (25). As illustrated in

obtained by converting the contour integral representation of Fig. 4, a plane wave is incident upon the parabolic cylinder.

Robin [13J to a summation using the same method as lvanov making an angle 0 with respect to the 4-x axis. The free-

11611 space electric field is given by (7). When this plane wave hits
the perfectly conducting parabolic cylinder, the scattered field

G'(x,. xf) C D ,(0)D , ,( sa)D (qi,<cQ) at a field point with parabolic coordinates (Q. -q) is 1161

D 77 (- e,) jl ( cot
-)+ ,P (27) E Is( 0 )2

0 poo )!
where D,, is the (integer) order p parabolic cylinder function sin -2
1141. 1151. and Dp (7,Ia*)

C=- 27ru, --  (28) D,(- ctD-P_(siia) D (

provided r/2 < 0 5 7r and where the asterisk denotes

The substiltuion on 116. p. 2621 should read t = ((I/4)x
2) i(u - (I/ complex conjugate. Inserting (33) into (25). and noting that the

4)x') 1121 field points will be on the negative x axis (Q 0, rl = V 2x,
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I the scattered part of Vm becomes the integer order parabolic cylinder functions in (33) by their
large argument approximation [151

i cot Dp(z) zPe - z2 /4 ,  IzI and I z IpI, (38)

VS(0 0)= )p_ 2
. = - =1 P! which is valid for all integersp > 0 and all negative integers p

sin 2 provided /ZI < 3 /4. Since the parabolic cylinder functions
DI)in (33) meet these conditions, in the far zone

Dp(O) *) Am(p). (34)
D-p-i c) EiS eYIkp+r/4) ,

* The major computational effort in evaluating the Zs, of I sin sin P=0
(31) and the Vs of (34) is the evaluation of the Am (p) which 2 2
occur in both. Prior to evaluating the matrix elements it is ( 0 P

* most efficient to form a table of the Am(p) for m = 1, 2,•, -j cot - cot -

Nand p = 1, 2,., P, where P is the largest value ofp 2 2

required to obtain convergence of the summations. P is P! D-p- ( 0a)
typically chosen as 15. This table then contains all the Am(p) 00
integrals needed in the solution, and its use insures that each cot - cot - < 1. (39)
Am(p) integral is evaluated only once. Note that for fixed m,

using the recursive relation for the parabolic cylinder functions
[15] allows efficient computation of the P values Am(p) p = IV. NUMERICAL RESULTS

1, 2, "", P. However, it is essential to recurse in the stable This section will present numerical results based upon the
direction as described in [14]. We also note that since Dp(O) = above MM/Green's function solution for TM scattering by an
0 o for p odd, the summations in (31) and (34) need only include impedance sheet in the presence of a parabolic cylinder. The
the even values of p. first example is designed to illustrate the accuracy of the MM/

Field Green's function solution by comparison with a limiting case
Ewhere an exact solution is available. The frequency is 300

Once the elements in the MM matrix equation have been MHz, and the problem geometry is illustrated in the insert in
evaluated, (17) can be solved for I, and the total field at any Fig. 5. Here we have a perfectly conducting half-plane (i.e., a
point in space can be found from parabolic cylinder with F = 17, = 0) with a sheet impedance

I4 extension of length L = X/2 and impedance Z, = 0 (i.e., a

ET=EI+ IET (35) perfectly conducting strip). The net result is that we simply
n= have a half-plane. We analyzed the strip extension of the r1 =

0 parabolic cylinder using an N = 10 equal segment MM/
where as indicated in (22), E' is the total electric field of mode Green's function solution, as already described. Fig. 5 shows
n radiating in the presence of the parabolic cylinder, and Ei is a comparison of the magnitude and phase of the MM/Green's
the total electric field of the incident plane wave in the function and the exact (see [12 , ch. 8]) current induced on a
presence of the parabolic cylinder. Using the volume equiva- half-plane by a unit amplitude TM plane wave with edge on
lence theorem of (5), it is particularly simple to evaluate the incidence, i.e., Oo = 180". The MM/Green's function points
total field within the dielectric cylinder. The average electric are plotted in the center of the segments and represent the
field on mode n is simply given by average current over the segment, since we employed piece-

wise constant expansion modes. Fig. 5 shows that the current
Er=z5 In/W 0 . (36) obtained from the MM/Green's function solution are very

Now consider the evaluation of the far-zone scattered fields, close to the exact half-plane currents. The only exception is the
that is, as p - o. The scattered field is given by (35), except current adjacent to the edge at x = 0. Here the MM/Green's
that we replace E' by E" . Then, assuming that the I are function value is about 5.8 A/m, while the exact value at x =
known, we need expressions for Er and Es in the far zone. 0.025X is 4.0 A/m. Thus one might conclude that for the edge

Referring to (22), E7 can be written as the sum of the free- segment the MM/Green's function value is high by a factor of
space field of mode n plus the scattered field of mode n. Here about 1.45. However, it must be remembered that the MM/
we will only present an expression for the scattered field. The Green's function points represent the average current over the
far-zone scattered field of mode n at the far-zone field point segment and not the current at the center of the segment. It is
(p, 0) can be most easily obtained from (34) and reciprocity. well known that the exact current has a l/-x edge singularity
The result is as x - 0. For a function with a I/,'x singularity, the ratio of

its average value from 0 to W, divided by its value at W/2, is
- -V ejko N2 - 1.41. Thus the MM/Green's function value, which is a
- -) ~ e ,.4 ) Vl(-). (37) factor of 1.45 above the exact current at the center of the

segment, is very close to the average of the exact current and is
To obtain an expression for E s in the far zone, we replace as well as the pulse basis function solution can do. It is also
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Fig. 5. Comparison of exact and MM/Green's function solution for current

on perfectly conducting strip extension of half-plane.

TABLE I
CPU TIMES IN 0.01 S FOR VARIOUS NUMBER OF MODES N E10

N Compute 1Zs ] Compute [Z] Crout sol. Rx

5 15 1 3 x E /

10 17 5 3 T -- I
20 26 20 3 F
40 45 82 19 d7,
80 105 336 143

Cr 1 0 f • I GHE

L -30cm T - 0.3175cm

interesting to note that, in the absence of the half-plane, the R -OD -. z,-i 628.9 a

MM solution for the strip current would have an edge R -I001.-. Z 97.5+ i15.5n

singularity at x = 0.5X. However, by adding [Zs ] and V s to Fig. 6. TM plane wave incident upon parabolic cylinder with multilayer

the free-space impedance matrix and right-hand-vector, re- dielectric strip extension. Multilayer strip is of length 30 cm and consists of
R ohm resistance card on top oft, = 10 dielectric strip of thickness 0.3175

spectively, the MM/Green's function solution was able to cm.
"see" that there was no real edge at x = 0.5X.

Table I shows the CPU times for the above problem with N relative dielectric constant E, = 10. Setting R = o corres-
= 5, 10, 20, 40, and 80 modes. All CPU times are for a VAX ponds to removing the resistive strip, and from (12) the
8550. The times shown are an average of five runs on a time- lossless dielectric strip is equivalent to the sheet admittance Y,
sharing system. The CPU clock unit was 0.01 s, and thus the = -j0.00159 0 or the sheet impedance Z, = j628.9 0. If we
smaller times are not reliable. CPU times are shown for the let R = 100 0, then the 100-0 resistive strip on top of the
computational of [ZS], the computation of [Z°], and the lossless dielectric strip is equivalent to Y, = 0.01 -j0.00159
solution of the order N simultaneous linear equations via u or Z, = 97.5 + j15.5 0. For parabolic cylinders of focal
Crout's method. The CPU time to compute the right-hand- length F = 0, 1, 10, and 30 cm, Figs. 7(a)-(d) show the
vector [AZI or the far-zone field is neglible. Note in Table I backscatter echo width for these two cases and, for compari-
that the CPU time to compute [Zs] is roughly linear with N, son, the bare parabolic cylinder. The parabola F = 0
while that to compute [Z0 ] is quadratic. In fact, for N greater corresponds to a half-plane. In this case the data in Fig. 7(a)
than about 20, it takes longer to compute [Z °] than to compute were found to be in excellent agreement with the authors'
[ZSj. previous MM/Green's function solution for TM scattering by

The next set of data will be for the geometry illustrated in a general dielectric cylinder in the presence of a half-plane,
Fig. 6 at I GHz. Here we have a perfectly conducting and where the dielectric cylinder is represented by equivalent
parabolic cylinder with a multilayer dielectric strip extension electric volume polarization currents [21. For edge on inci-
of length L = X = 30 cm. The multilayer strip consists of a dence (Oi = 1800) and for the F = 1 cm parabola, Fig. 8
resistance strip of R 0 sitting on top of a lossless dielectric shows the magnitude and phase of the total electric field in the
strip of thickness T = 0.0106X = 1/8 in = 0.3175 cm and dielectric strip.
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I Electromagnetic Diffraction of an Obliquely
I Incident Plane Wave Field by a Wedge

with Impedance Faces
ROBERTO G. ROJAS, MiiER., ioEF

AbStract-A uniform as.mplotic solution is presented for the electro- with the application of the boundary. radiation and edge
magnetic diffraction by a %edge with impedance faces and with included conditions. The key step in the Maliuzhinets method is the
angles equal to 0 (half-plane), v/2 (right-angled wedge), T itwo-part transformation of an integral equation tito a first-order
plane) and 

3
T 2 (right-angled %edge). The incident field is a plane wave functional difference equato whose solution yields the

of arbilranr polarization, obliquel. incident to the axis of the wedge. The

formal solution, which is expressed in terms of an integral, was obtained unknown spectral function. Once the difference equation is

h% the generalized reflection method. A careful stud, of the singularities solved, the integral representation of the fields can be
of the integrand is done before the as.mptotic evaluation of the integral asymptotically evaluated. The problem becomes much more
can be carried out. The asymptotic ealuation of the integral is performed complicated for the case of oblique incidence. Several authors
taking into account the presence of the surface wave poles in addition to have studied the scatterin of an obliquely incident plane wavethe geometrical optics (GO) poles near the saddle points. This results in a oi

uniform solution which is continuous across the shadow boundaries of by a wedge [3], [9], [13]. [24]. [25]: however, each of the
the GO fields as well as the surtace wave fields, solutions in [3], [9], [13]. [24], [25] is valid for only a single

wedge angle. Moreover, all of the above asymptotic solutions,
except for [9], do not take into account the presence of the

I. INTRODUCTION surface waves excited at the edge of the impedance wedge. In

T HE SCATTERING of electromagnetic and acoustic other words, the surface wave poles near the saddle point were

1 waves by objects that are not perfectly conducting has ignored. In [9], the integral representation of the fields

many practical applications. For example, radar absorbing scattered by a half-plane with different impedances on each

materials are used to cover objects to reduce their scattering, face is given, but the asymptotic evaluation of the integral for

To study the scattering properties of objects that are not the case of oblique incidence is not performed. The present

perfectly conducting. Leontovich [1] developed a boundary author obtained an exact solution using the Wiener-Hopf

condition known as the impedance or Leontovich boundary method for the the field scattered from a planar surface with an

condition. Although the impedance boundary' condition is an impedance discontinuity and from an impedance half-plane

approximation to the exact boundary conditions satisfied by [19]. The asymptotic evaluation of the exact solution in 119].

the fields at the surface of the scatter. it is a very useful which is expressed in terms of an integral, was carried out

approximation since it allows the solution of many practical taking into account the presence of the surface wave poles near

problems which otherwise could not be solved, the saddle point. It is noted that the scattering from a right-

Among the various shapes studied in the past. the scattering angled wedge can also be solved with the traditional separation
by wedge-shaped objects has received a lot of attention [2]- of variables technique by making a change of variables first

[26]. There are basically two methods to solve for the fields suggested by Lewy [27] and Stoker [28]. This method was
scattered by wedge-shaped objects. namely. the Wiener-Hopf followed by Hwang [22] and Karal et al. [23].
and Maliuzhinets methods. Maliuzhinets [2] introduced a This paper is based on the generalized reflection method
method to solve the problem of the scattering of a normally (GRM) which is more general than the Wiener-Hopf method
incident plane wave by a wedge with impedance faces. Note [19]. The GRM. which is a generalization of the Maliuzhinets
that for the case of normal incidence, the problem can be method, was developed by Vaccaro [12]. [131 to stud\ the
scalarized by separating the fields into TMz and TE: polarized scattering from an impedance wedge excited by an obliquely
components. The Maliuzhinets method basically consists of incident plane wave as depicted in Fig. I where the z-axis
expressing the total field as a spectrum of plane waves which coincides with the wedge-axis. Since the TM: and TE,
can be written as an integral with an unknown spectral polarized fields are coupled for the case of oblique incidence.
function. The unknown spectral function is then determined a two-element column vector f:. whose elements are the z

components of the electric and magnetic fields, is defined. It is
Manuscript received December 5, 1986 revised October 26, 1987. This then sufficient to obtain a solution forT" since all the other field

work was suppored in pan b% the Joint Services Electronics Program under

Contract N00014-7m-C0049, and in par by The Ohio State University components can be determined from f:. Next, as in the
Research Foundation. Maliuzhinets method, the vector. is expressed as an integral

The author is with the ElectroScience LaboratorN. Department of Electrical along the Sommerfield contour with an integrand that can be
Engineenng, The Ohi State University. 1320 Kinnear Road, Columbus. OH
43212. written as the product of an unknown spectral function r, and

IEEE Log Number 8820231. a known exponential function. Since the iniegral satisfies the
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scalar Helmholtz equation, the next step is to impose the polarization, obliquely incident -, the axis of the wedge as
boundary conditions which yield an integral equation for the depicted in Fig. 1. As shown in [171, [291, if all the fields have
column vector F_. The integral equation is then converted into the same exponential z-dependence exp (ikz cos 3), which is
a functional difference equation which is referred to as the the case here, then it is sufficient to find the solution for the z
generalized reflection equation (GRE) [121. Unlike the case components of the electric and magnetic fields. Thus letf. be
considered by Maliuzhinets, the GRE is a second-order defined as follows:
difference equation which is much more difficult to solve than -
a first-order one. It turns out that the GRE can be solved in (p, (2)
terms of the Maliuzhinets functions for four wedge angles,
namely, the half-plane and the two-part impedance plane with where E. and H. are the z components of the electric and
arbitrary impedance values on each face and the 7r/2- and 31r/ magnetic fields. respectively, and -1o is the free-space intrinsic
2-wedges with one face a perfect electric conductor (PEC) or a impedance. The column vector f, plays the role of a vector
perfect magnetic conductor (PMC). Recently, Senior [26] potential since all the other field components can be obtained
described a procedure similar to that followed by Vaccaro in terms off. It follows from (2) that the incident field can be
[121: however, one face of the wedge is always a PEC in [261. defined in terms ofp,, i.e.. I
Furthermore, the spectral function for the 31r/2-wedge in [261
does not reduce to the known spectral function when 73 r/2 =[ _ 7E' 1
because the constant c, in [261 is incorrectly evaluated. 0-l

The purpose of this paper is to obtain a uniform asymptotic = ' exp (-iKp cos ( - ')) exp (ikz cos13)
solution for the four special cases mentioned above. The

asymptotic evaluation is performed taking into account the E 0- 0 <

presence of the geometrical optics (GO) poles as well as the H0 ,= L , O<&<nr, 0<3< I
surface wave poles (complex poles). This results in a uniform
expression acrcss the shadow boundaries of the GO and (3)
surface wave fields. were n, - ksinandp = r"7y . Note that

The expressions for f and F. are given in a very compact E0 , and Ho. are arbitrary constants and k is the free-space
matrix notation. This is especially useful when the unknown wavenumber. To obtain a unique solution, the fields have to

constants appearing in the spectral function F, have to be satisfy two more conditions; namely, the radiation and t
determined. Besides being compact, the matrix notation also conditions. edge

helps in the physical interpretation of the results, and it is
suitable for numerical computations. Several numerical exam- Ill. GENERALIZED REFLEC77ON METHOD

pies are presented and the effect of the impedance values on Following Maliuzhinets approach, the total field .1: is m
the diffracted and surface wave fields is discussed. Note thatall the fields in the following discussion have the e - 't time expressed in terms of a spectrum of plane waves. This
dllep iedn he folowis g sup ssed. T hro th paer,1 atb spectrum can be written as an integral along the so-calleddependence which is suppressed. Throughout this paper, a bar twofold Sommerfeld contour -y depicted in Fig. 2, i.e.,
and a double bar on top of a function name denotes a two-

element column vector and a two-by-two matrix, respectively. e,,k os

11. SATEMA (p,0, Z - F.(at + -It. STATEMENT OF THE PROBLEM z 2i 2 2
The problem to be considered here is the electromagnetic

(EM) diffraction by a wedge with impedance faces as shown in • exp (- iKp cos a) da (4)
Fig. I. The faces of the wedge are labeled 0 and n and the
exterior wedge angle is nir. Let p. 0. and z denote the wvre the function F: is unknown at this stage of the analysis.
cylindrical coordinates with the z-axis coinciding with the However, due to the radiation and edge conditions, one can
wedge axis. As depicted in Fig. 1. the angles 0 and 0' are deduce that F, is an analytic function for im ol > d, where d

measured from the 0 face. The impedance of face 0 is Z1, is a positive real constant. Note that the integral in (4) U
while the impedance of face n is Z2, where both ZI and Zz are converges uniformly, and satisfies the scalar Helmholtz
scalar constants. In other words, the impedance faces are equation and the radiation condition provided that the contour
isotropic and homogeneous. The faces of the wedge satisfy the -y, shown in Fig. 2, lies on the half-planes defined by Ilm aI >

Leontovich boundary condition, namely d. It also follows from the edge conditions that the asymptotic

X~ u ,x 
behavior of Pz is

2 -)=fo lim F.(a = constant vector. (5)

2 1Moreover, the presence of the incident field, given in (3),

where e is the unit vector normal to the plane 0 = constant, implies that P(o) must have one first-order pole singularity at

Yl. 1 = I/Z., and f and F1 are the electric and magnetic oa = nr/2 - '.

vector fields. respectively. After applying the boundary conditions, (4) becomes an
The incident field is assumed to be a plane wave of arbitrary integral equation which can be transformed into a functional
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I Fig. . Impedance wedge with obliquely incident plane wave.
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Fig. 2. Sommerfeld contour y. Shaded area: real (- iKp cos a) < 0.

difference equation [2], namely, h1. The real part of P is restricted to the interval [0, Y/2]I because it is assumed that Re (ZI, 2) > 0. Equation (6) is called

(7 sin c ±sin i )X (-)(a± ) the generalized reflection equation which is very difficult to
2 solve because of the nondiagonal matrix e(,). In fact, (6) can

Ir) be reduced to two scalar second-order functional difference
=(-Ysin ot±sin ) )(-a)fz - (6) equations for the fields E, and H , respectively. Note that for

2 (\2 the case of normal incidence, i.e., 3 = i-/2 , (!(c) becomes
where diagonal and (6) reduces to two first-order functional differ-

(f) = cos at + ,Y sin oi cos 3ence equations which are easier to solve. This special case was
treated by Maliuzhinets [2] and a uniform expression has been

[0 -1 (7) obtained in [16]; however, the presence of the surface wave

B=0 1 [7 0 "7 poles near the saddle points was not taken into account in [16).In general, if one finds a solution P, for (6), another solution
The diagonal matrix sin ;t,2, sometimes referred to as the is given by f(ot)i(a), where 6(a) satisfies the difference
modified Brewster matrix, is given by equation

sin PI1, / -,2 'r • // -O+

sin ; sin P J  d ±_- =0 . (9)

1 01 Thus the most general solution of (6) can be written as follows
_ .sin si2 0 < Re(p) <r/2 PP=F= ')d( ])=[P, /21J(a) (10)

L 0 J (8) where F, and P2 are solutions of (6). It can be shown that a

solution for (6), i.e., F1 (ot), can be found in terms of the
where Y0 = 1/no is the free-space admittance and , = v, + Maliuzhinets functions, introduced in [2], for the following
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where

(a h(a) (12)

* It also can be shown that *e.h(a) can be expressed in terms of
...... ,another function, namely,

Zz 0.(a Ze )~n i~(a 1 4i

*"hC'=0 a+ T + P" 2] r T

0 * a \ 2 22,f l \ 2 ~ 2 V

, Z a ( 1 3 )
(b) (3

where #,(a) is the well-known Maliuzhinets function. The
function n(a) and its properties are discussed in [2]. For our
purposes, it is enough to mention that

0, lim ik.(a)=O lexp
lim 10 ~ 4n"'PE C or PM C 

' ") o

S,(Of - 1r) c( O + ) (14)

cos 
2

The next step in the analysis is to find a solution for (9). It is
(c) easy to verify that one solution of (9) is the function d sin (a/
PEC OR PMC n) where d is an arbitrary constant. Furthermore, one can also

o° Z 0 show that d sin' (a/n), where I is an integer, is still a solution
of (9). Thus keeping in mind that d(a) must have a first-order
pole at a = nir/2 - 4,', the most general solution of (9) can
be expressed as a Laurent series around the point sin (nT/(2n)
- k'/n) = cos (W1'/n). By enforcing (5), which was derived
from the edge conditions, it turns out that for the cases being
considered here (n = 1/2, 1, 2, 3/2), the series for d(a) must
stop at the second term, i.e.,

(d) d(a)- + 0 +a, sin . (15)

Fig. 3. Geometries for which generalized reflection equation has been sin -~~~o - (01)
solved (a) n = I. (b) n = 2. (c) n = 3/2. (d) n = 1/2.

four cases (see Fig. 3) when a * r/2: Since d- 1, do, and d, are unknown constants in (15), the

a) two-part impedance plane, n =solution for f is not unique. To obtain a unique solution, the

b) half-plane, n = 2 unknown coefficients in (15) must be determined. The first

c) r/2-wedge where Z, = 0 or Z, = 0, n = 3/2 coefficient d-1 can be easily evaluated by noting that the

d) 31r/2-wedge, where Z, = 0 or Z, = co, n = 1/2. residue of P, at the pole a = nr/2 - 0' must be equal to
the incident field. Thus d_ is given by

Thus, the solution of (6) for the cases described above can be the inIdn )d T nIi v ny

written as follows: a, ' I
n U_

S( =-, f(a) 0<'<nr. (16)

The other two coefficients are determined by first observing
- for n= I that the matrix 9-1(a) introduces complex poles whose

residues are fields which have no physical interpretation. Thus
9 (c) for n = 2 (1 the unknown coefficients ar, and d, are adjusted in such a way
( )f (1) that the complex poles of 3 - '(a) are removed. This is done by

a +- - , for n = 3/2, 1/2 solving for do and a, in a system of linear simultaneous
2 /equations (see (38a) in the Appendix). When Z1, 2 = 0 or Z1.2

and Z, = 0 or Z, = oo = ¢o, some of these equations become linearly dependent and
thus are not sufficient to solve for do and dl. However, the
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edge conditions will dictate that some of the constant must be Equation (20a) is obtained by a repeated use of the identity
equal to zero. Thus once the constants have been evaluated, given in (14). The diagonal matrix A(a) is given by
the sotution for the function P, can be written as follows:

J,(ct+nir/2- 0)=.(of+mr/2- O)oZ, O< 0 < ft R(cc) rMe(a) 0 ]

(I 7a)

where Mwhere) m,' )/m(- a, v 2) (20b)

A (a+nir/2-)-'(a+ni/2- ) where

1t + +nt/2 - ) sin )/n m 2nn2cos 2n 
n _____)__os (+or+nr/2-) o (a+n/2+v)

aco -Cos (20c)

For the r/2- and 3r/2-wedges (n = 3/2, 1/2), where Z, is

+ , + A cos (a " equal to 0 or co, the functions 41'eh(a) and Meh(a) have to beB Cos carefully examined. Table I summarizes these special cases.
Note that spectral function F:(a + n r/2 - 0) is equal to

zero when 0' = 0, nmr (grazing incidence) as long as ;(n7r/2
Sx-nt mr/2 - ')(n/2-) - 0i') does not have any zeros at 0' = 0, n. However, for

(17b) the right-angled wedge problem where Z, = 0 or Z, = o. the
function 'f(nr/2 - 0') does have a zero at 0' = 0. Thus for

and the constant (two-by-two) matrices J, and B, are given in n = 1/2, 3/2, and with the help of Table 1, 'f - (nir/2 - 0')
the Appendix. Thus a formal solution for P, has been found for sin (46'/n)/n can be evaluated at 0' = 0 by taking the limit as
four wedge angles in terms of an integral along the Sommer- 0' goes to zero, namely,
feld contour. For the cases being considered here, /,,(a) is 1 0
given by lim -(n2 sin ( )/n g (21a)

(a)=exp 1 2u - rsinu duj (18a) where

S(O - Ip 7sinu-2 ;T2r sin (u/2)+2u du} =  (,ej) 3 (1-,+-)

(18b) gh=O for ZI=0, n=- 1 (21b)

cos(-Z-cos(-t ~and

* cOs2 ( ) cos ((p) and

it/1 2()=cos (a/2). (18c) for Zi=oo, n= . (21c)

When 3 = 7r/2 (normal incidence), (17b) becomes Note that when 4,' = 0 the pole ai = 0 (see (17b)), which

Az (of + nr/2 - ) =(of + nr2 - 4) (nr/2 - 0') appears to be a double pole, is still a simple pole. Further-
more, it also follows from (17b)-(21) that for 0' = 0 and ZI

sin (4,'/n)/n = 0, only a TE-polarized incident plane wave (E0, = 0, H0,

Cs /(19) * 0) will excite a nonzero scattered field. This agrees with the
cos s -  boundary conditions satisfied by the fields on face 0 of the

wedge. On the other hand, if ZI = oo, the incident plane wave

Unlike (17), the expression in (19) is valid for any wedge has to be TM,-polarized, i.e., Eo, * 0, Ho = 0 (which also

angle. agrees with the boundary conditions), to have a nonzero

An important identity that will be very useful when the spectral function P, when 0' = 0. It is important to keep in
diffracted field is developed is the following: mind that since (21) was derived by taking the limit of 0'

going to zero, the constant F0, in (17a) must be divided by 2

'f(a - w) = ' (a + r)MR(at). (20a) for the case of grazing incidence.
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TABLE I
n=312, 1/2

(a) 1r +" "' IZ1 OZ*Otnte ''(cx)co 2 2' )o-(-! -2/,

M1(u) = lm (- u, P)

u-r~~n2 2 u" ri/ 2

Ml(u)=cos ( 2rn i) /M(-U' v')/COS ( 2Tnr)U

(.T tk / . )T I
Z 1=-, Z2 *, finite *,(Ct)=& +)

- 2n 4 2 2/2 -2 2

Mh(U)=cos (u-r+ nr/2) /m(-U, ,)/Cos u+ r+ mr/2)

Ml(u)= ,Ira(- U, PZ)

As mentioned before, Senior (26] obtained an expression discussed first. At the end of this section, a closed-form
for the spectral function F(a) for n = 1/2, i.e., sj(a) and expression of (4) will be obtained for n = 1/2.
s(C) in (57) and (58), respectively, of [26]. However, s(a) In addition to the real poles in (22), Pr(a + nir/2 - 40) also U
does not reduce to the known result when 03 = ir/2. The reason has complex poles when n = 1, 3/2, 2. Actually, these
for the error is that the constant c2, given in [261, is incorrectly complex poles are the poles of the function 4(a + nr/2 - 0)
calculated since it should be equal to zero as dictated by the and the ones closest to the saddle points a = ± w are
edge conditions. In other words, with c2 as computed in [26], ech = h ec p2h

the spectral functions sl(a) and s 2(ct) do not satisfy (5) (in this a l, =0+ T+ P- a,L= -eh - v+4 -n. (23)
paper), which all valid functions must satisfy. Although the
constant c2 is incorrect, the field E, obtained in (59) of [261 for The pole a,, is closest to the saddle point a = i and, if I
the 31/2-wedge is correct because it turns out that cn and c2 do captured, its residue contribution can be interpreted as a
not contribute to the fields E, and H, when n = 1/2. This surface wave traveling away from the edge on face 0.
important point will be explained in more detail in Section IV. Likewise, a 2sw is the pole closest to the saddle point a = - r

and, if captured, its residue contribution is a surface wave
IV. AsYMPTonTc ANALYSIS traveling away from the edge on face n of the wedge. The

In general, the integral in (4) cannot be evaluated in closed poles listed in (22) and (23) are depicted in Fig. 4. It is noted
that since sin Pe -sin Ph =I /sin 2 03, only two surface waveIform due to the complicated nature of the integrand. However, 1,2 1/

as is the case in most diffraction problems, one can apply poles can be captured for given values of Z, and Z 2.

asymptotic integration techniques to obtain useful solutions. The first step in the asymptotic evaluation of (4) is to

Here the method of steepest descents will be used to obtain the introduce two steepest descent paths SDP(± r) passing I
leading term off, for large Kp. through the saddle points a = ± ir as shown in Fig. 4. After

The exponential function in (4) has two isolated simple deforming the original integration contour into SDP(ir) and

saddle points at a = r and a = -r. Furthermore, Pi(o + SDP( - ), f, becomes 1
nr/2 - 4) is an analytic function, except for some real and I (p, 0, z)= J(p, 0,z)+", (p, 0, Z)
complex simple poles. The real poles are located at

f N=4'±46 + 7nN, N=0, ± 1, ±2, -.. (22) +1rz2(P1 ' Z)+J17(PI ' Z)+1 4(P'I z) 

For n = 1/2, all the pole singularities of Pa + nr/2 - )J(p, 4, 4 n= 1, 3/2, 2. (24)

are given in (22), i.e., Pj(o + w/4 - 4) does not have The functions f r, ' 1 , T' 2,1s., and.1r2 are the residues of t: 3
complex poles. Moreover, as shown later, the integral in (4) evaluated at the poles that are captured when the integration
can be evaluated in closed form when n = 1/2. Thus the contour is deformed. Thus ji is the incident field, Jr, and 1 z2
asymptotic evaluation of (4) for n = 1, 3/2, and 2 will be are the fields reflected from the 0 and n faces of the wedge,
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'Ima

I amv ) I 13 We

I ns/2 

trvlnFwyiomtee g n te s decnt aces a o e thelriiso fntonP(

wedge, respectively. These fields are given by (n = 1, 3/2, 2) C1 =-0 ' af2 = +

1" = P1 Poexp(-iKp cos 0-a +0 2w a,5+) +p~

exp (ikz cos 0)[ U(0 - + 7) -U(0 - -T7)J (25a) 016,7  ni -p~ (27a)

J1 , 2Po exp(-iKp cos 0 +) and

Uexp (ikz cos ) U(ir - 03+) (25b) 40 e lh v;+ accos G1/cosh

12=3oexp (iKp cos (0+~ - 2nr)) e~h h i ~-aco 1cs 2*(7,

exp (ikz cos;0) U( + - 2nir+ -) (25c)

I4O exp (-iKp cos a4) exp (ikz cos 3) Eautn 2)yed 2aF, P= (25d)
7Poh, exp ( -iKp cos at5) exp (ikz cos i3) (2) -(+)('v)(i-')

Mo,-0, if Tm (Z1) <O n=l1, 2

761 exp (-iKp cos c,6 ) exp (ikz cos 03)22* U44~), iim(Z0 n =3/2,
*z* U0 0') i =1Z) (25e)

P17Po.. exp (-iKp cos C(7) exp (ikz cos 03) (28b)

L U(O -4sd, if IM (Z2) <0 (i 'X(i -. ' 2 ~
where U is the unit step function, t01 0 ±~', and it is not -,2

to be confused with 03. The residues (711 are computed as
follows: F3= 0'-3 X(nwr-4', P) 7

I ~ i ---a)~ a~t) 1 , ,7 (26) n =3/2,

where the poles {a,} 1 , and the angles Oei and Oeh r (28c)
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where written as follows:

X~a, , [ R(ct h), ] R (cc, P)= =[si n si] ,,0-0= 0 °]
(28d) 2 e=[b0  f] ,.h=[ 0  . (30a)

and The constants a,.h and b,.h can be expressed in terms of the

C, -A for Z,. 0 [I _0] Mauzhines function O, namely.
for Z- = [o 0 ,1n()30b

NoetatPP, and ?3 are the residues of Aja + nr/2 On (3) + 1 3 _peh1,2(3b
evaluated at the GO poles. The residues corresponding to the 2 1= +1,22(30b
complex surface wave poles are given by (n = 1, 2)

~ i v + )2snbeh'1o' (P eh Pe.h 32)on P~hP~

sn ( ) .1 ( n=1, 2 (30c)

n 2

i1v 3 1

co s ; ) Cos b , : -ni -- 2p' , for = .Z 0 n3 d

2 2 2 Z, 0o 23d

cos forn=-,Z,=o (30e)
(3 2

S@-t (m-- - ' It is obvious that for the ir/2-wedge (n = 3/2), ?45 = 8. In
other words, no surface wave can exist on the 0 face of the

(29a) wedge when Z, = 0 orZ, = oo.
The last term that needs to be defined in (24) isf , which is

and (n = 1, 2, 3/2) referred to as the diffracted field, and it can be expressed as
follows:

P6 7 = i- (P__- 2T - / h 2 sin ( n J)(p, 4,z) exp (ikz cos ) ( r )•2 2n 2riSD z o + -2

sin (n-Z) P2e,2h4n (nr- ) .Aoexp(-iKpcosa) daf

-- { O -co (T-C) Sexp (ikzcos 03)
• J¢oSDF -, "2--

+ cos ( )3 exp (-iKp cos o) do (31)

where SDP( + i) are the steepest descent paths depicted in

., lT\/ ) ( r Fig. 4. The asymptotic evaluation of (3 1) is based on the work
* - '" - of Gennarelli and Palumbo [301. Actually, the simplified

expressions given in [311 are used here.

(29b) Without going over the details, the asymptotic evaluation of
(31), taking into account the presence of all the poles of F

where the matrices P1 and P2, introduced in (29) can be near the saddle points t = ± r, and keeping only the leading I
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terms of order (Kp) -12, yields to the observation point, and L = s sin2 0. The diffraction

(p, -0, z)-bo( , -0', L, P1, P2) coefficient [, is given by

SeiKP ho,0 ,PV) O O ' , Po)

P *(x=0, y=0, Z) (35b)

where where f was defined in (28e).

PI e2 i nV2?r sin /2/n)
[4z(4,, 4,', L, t'1, v2)= si 4 -/) l~(n/2-4,) '( +nr/2 -4,)

n+ 219.x +sinCo1 ,
I Cos ( )

Co CosAco (
I~~ i ?(l-Tf(ikLs ))

• ;-1(nxr/2-r0')9(nir/2-0 ')_ 4Z r si/ - st (32b)

I and L = p sin/0. The matrix M(a) was defined in (20b), and The diffracted field given in (32) and (35) is valid as long as
the constants A,, and 13n are given in the Appendix. The all the poles {a,} are simple. However, when there is the
function s, is given by possibility of double or higher order poles; i.e., when 0' = 0,

n, 4 = 0, nw and/or Z1,2 = 0, oo, the integral in (4) can be7. evaluated in a manner suggested in [30]. Note that for the case2 -of grazing incidence, the spectral function P, in (17) is equal to
whr zero, except when Z, or Z2 is zero or infinity. It can be shown

where for n = 1 and 2, as was done in (21) for n = 1/2 and 3/2, that

S , if IRe (al)l < 27 Fstill has simple poles when Z, = 0, o and 0' = 0 or when
a 1= 2+ iIm (a/), if Re (a)>21r (33b) Z2 = 0, o and 4' = nir.

7+ (a), if Re ()< -21r The function fi(x) introduced in (32b) is the well-known
-2'+ilm ,-[19], [32] transition function

and the poles {ai} were defined in (27a). th2 31rg
For practical applications, it is convenient to express the 9:(x) = 2i-rei e -  dt 2 <arg (36)

diffracted field in the ray-fixed coordinate system [32]. Thus rX2 2
the unit vectors ', $, 0', a, and 9 depicted in Fig. 1 and the where x is allowed to be complex cue to the presence of
column vectors and I,, are defined as follows: complex surface wave poles. However, because of the square-

root function x ", it is necessary to introduce a branch cut on

9=2; 0, =X the x plane so that f(x) will be a single-valued function.
l x.s'l lXsl Furthermore, to assure the convergence of T(x) as jx - o,

d the branch cut that is chosen runs from the branch point x = 0
E d. to infinity along the positive imaginary axis on the complex x

plane. Thus the argument of x is restricted to the intervalI E -3 '/2 < arg (x) < ir/2.
E "(34) The evaluation of (4) for n = 1/2 proceeds in the same

fashion followed for n = 1, 3/2, and 2. That is, the original

The diffracted field ca integral in (4) can be expressed as the sum of the residues
namely, corresponding to the poles enclosed by the integration paths

depicted in Fig. 4 plus the two integrals given in (31). In

fd (S'.0 eis addition to the poles a= +-', a= 4+4', a =,+4'
]i(s, 4,, 0)-Ie(4,, 4,', 0. L, i', P2 t'(QE) (35a) - rone of the poles a = r-' ± irwill also be captured,

depending on the angles of incidence and observation.

where QE is the point of diffraction, s is the distance from QE Furthermore, it is easy to show that the periodic spectral
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function AF(t) has a period of 21r for n = 1/2, which means IF
that the two integrals in (3 1) cancel each other. Thus the field

can be expressed as the sum of four residues, namely,

fexp (-iKp cos oi)+X, exp (-iK cos ))
S+P (exp (iKp cos 0+)+!, exp (iKp cos 0-)) I ....

- Poz exp (ikz cos 0) (37a) , . 3 I

where]
w eeP= C- (40, - /2)A0r/2 - 0', )((/2 - 0') (37b)i

and C, X, and A were already defined. The minus and plus Co
signs in (37a) correspond to the case when Z, = 0 and Z, = -J -eaI

c, respectively. Since the field f, in (37a) is made up of.
residues corresponding to the GO poles. the constant matrix 1,
in (17b) does not contribute to , (b. is zero for n = 1/2).This is why the field E in [261 is correct even though the i

constant C2 (in [26]) is incorrectly evaluated. en g h..<, ...

V. NUMERICAL RESULTS 1% ~ 7 HI

To obtain numerical results, an efficient algorithm was i
developed to compute the Maliuzhinets functions. A 16-point .
Gaussian integration algorithm was used to compute the 0.' 30 . 60 90: E "l S. 18C

Maliuzhinets functions for the half-plane and the two-part, ANOLE PH ESREES

impedance plane. (a)
In Fig. 5, the field scattered by the two-part planar surface zJ-0.0-10.8 K.-1

is depicted. The scattered field was computed for various *'- " 6-140'

values of Z2 while Z, was kept constant. As expected, when Z, .... zZ- - I..Z
= Z2, the diffracted field is zero and the scattered field is Z'.-..-,.8
equal to the reflected field. When Z2 is twice the value of Z,
the diffracted field starts to contribute to the scattered field. i
Thus, due to the interaction of the reflected and diffracted
fields, the magnitude of the scattered field starts to fluctuate.
The fluctuations become larger when Z2 is equal to the
complex conjugate of Zi, which means that the diffracted field I
is larger. Besides the diffracted field, surface waves are also I,

excited along the z axis where the impedance discontinuity -
occurs. One surface wave travels on the ZI-impedance half- . ...
plane, while the other travels on the Zz-impedance half plane.

The effect of the surface waves is stronger near the surface of
the two-part impedance plane. Thus in Fig. 5 the surface wave - I
effects can be observed from 0 to about 10" and from 170 to " ..
180". It is important to mention that in addition to the
copolarized scattered field, i.e., reflected, diffracted and
surface wave fields, there is also a cross-polarized component
when the incident field is obliquely incident.

The second geometry considered here is the half-plane with 0. 30. . 90. 120. S0O. I1 80.
different impedances on both sides. An important result for PNGLE PH (OEGREES)

practical applications is the study of the fields excited by the (b)

edge of the half-plane, i.e., the diffracted and surface wave Fig. 5. Field scattered by two-part impedance plane for obliquely incident
fields. In Fi6 . 6, the edge excited fleids (diffracted and surface plane wave. (a) TM, polarization: E, = I, H 0, = 0. (b) TF_ polarization:

wave) are plotted for two different values of Z1, while Z2 is E = 0, %Ho, = 1.

kept constant. For reference, the diffracted field for a perfectly
conducting half-plane (Z = Z2 = 0) is also depicted. Note polarized component in addition to the copolarized fields when
that for the perfectly conducting half-plane, the diffracted field 0 * v/2. Note that when the direction of propagation of the
(of order (Kp) - 1/2) has the same polarization as the incident incident field is normal to the wedge axis, the cross-polarized
field. However, for the impedance half-plane, the diffracted fields vanish. Another important difference between the PEC
(of order (Kp) - 1/2) and surface wave fields have a cross- and impedance half-planes is the presence of the surface wave
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Z2 -0.01 ,0.5 Ko-10 
#"120* 0-135'

4'-60* 9-135*"- 
Z2 0.0.12.S

i ___ Z'0.01-4O.8 
---- Z2.O.0500.S

Z1 .0.01-. 0.15 .... ZZ-ZI-O
.... ZZ-ZI-O
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90. 35, 80. 
.25. 273. 35. 3

PNGLE PH COFGREESI 0.' 45. 90. 135. 480. 225. 270. 345. 360.3 (b) RNGLE PH (DEGREES)

Fig. 6. Edge excited fields (diffracted plus surface wave fields) for (b)
impedance half-plane. (a) TM. polarization: Eot = I, Ho: = 0. (b) TE, Fig. 7. Total field excited by plane wave obliquely incident on impedance
polarzation: E, = 0, /H,, = I. half-plane. (a) TM, polarization: Eo, = I, Ho, = 0. (b) TE, polarization:

dEa, = 0. oHo = I.

fields. Since the diffracted field (of order (Kp)- 4/2) tends to is small. However, when the imaginary part of Z2 is increased
i zero as the observation angle approaches the surface of the to 2.5, the surface wave becomes much stronger, especially

half-plane. the surface wave becomes important in this region. the copolarized component. Although not shown here, note
In Fig. 6. the effect of the surface waves can clearly be seen that the agreement between the solutions presented here fornfrom 0" to 20 ° and from 340 ° to 36(. - 1 and n = 2 (Z1 = Z2) and the solutions presented in [19],I In Fig. 7. the effect of increasing the reactance of Z2 on the which are based on the Wiener-Hopf technique is very good.Isurface wave traveling on the Z2-surface is studied. When Z2  The last geometry considered is the ir/2-wedge. In Fig. 8,
= 0.05 + i0.5, the surface wave traveling on the Z2-surface the incident field illuminates the PEC-face of the wedge andI
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C!t 
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. . .. . .0. 45. '0. 135. '9O. 22S. 20
0. S. g0. 135. too. 225. 270. ANGLE PH OEGREES)

ANGLE PH (DEGREES) (b)
(b) Fig. 9. Total field excited by plane wave obliquely incident on 90* wedge

Fig. 8. Total field excited by plane wave obliquely incident on 90* wedge. with one PMC wall. (a) TM, polarization: E0, -I. Ho, - 0. (b) TE,

(a) TM, polarization: Eo, -I. Ho, = 0. (b) TE, polarization: E0, -O0 polaization: 0  0, i10H02  I

plots for three values Of Z2 are shown. The effect of Z2 on the field (for the case considered in Fig. 8); however, as

scattered field is not very significant when the incident field expected, it still plays an important role on the surface wave
illuminates the PEC face, except on the region from 260 to field. The last example is shown in Fig. 9, where the incident
270* where the surface wave effects are important. In other field illuminates the Z2-surface and the other face of the wedge

words, Z2 does not play an important role on the diffracted is a PMC. The total field for two values of Zz is depicted, and
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it can be seen that the effect of Z2 is very significant. When the diffraction [321. Thus the representation of the fields in terms
reactance of Z, is increased (in magnitude) from -0.05 to - of f is the most appropriate in diffraction problems.
0.8, the cross-polarized component becomes much more
important. This makes sense, because if Z2 were set equal to APPENDIX

zero (PEC), the cross-polarized components of the reflected The constants A,, and 1, are obtained by solving the

and diffracted (order (Kp) - 1,2) fields would be zero. following equation:

VI. CONCLSION. ~(~ i

A uniform asymptotic solution for the fields scattered by ; (i)-an - 0-,-6s

four special cases of an impedance wedge was presented. The
incident field was assumed to be a plane wave of arbitrary
polarization. obliquely incident to the axis of the wedge. The (38a)
uniform solution, which is valid for large Kp, was obtained by 2 ) 0 2 -'

means of the method of steepest descents. The asymptotic
evaluation of the integral was carried out by taking into where a are the poles of q-'(o) and

account the presence of the geometrical optic poles (real poles)
as well as the surface wave poles (complex poles). This VI_=[_i, I] a,(-=sin (38b)
resulted in an expression which is continuous across the (n)
shadow boundaries of the GO and surface wave fields. Note that u is a one-by-two row vector. The details of the

The diffracted field developed here is of order (Kp)-w
with respect to the incident field. Thus, for nonzero finite solution of (38a) are given in [12], [131, and they will not be

is zero repeated here. Only the final results for the cases considered in
values of Z,, and when K is large. the diffracted field the previous sections, i.e., n = 1, 2, 3/2, and 1/2, are given
on the surfaces of the wedge. To obtain a more accurate here.
diffracted field on the surface the wedge, it is necessary to It is convenient first to introduce the following functions:
include the next term of order (Kp)- 3/2 as suggested in [151,
[161. The diffracted field presented here is valid for any
combination of incidence and observation angles. except that 2 ,V()o aO) -CO(nr/2-&)l N,(cr=
special care must be taken for the cases of grazing incidence
and/or when Z1.2 is zero or infinity. (39)

The expressions for the reflected, diffracted, and surface
wave fields were written in a very compact matrix notation. where !r and a,(a) were defined in (28e) and (38b),

Besides being compact, the matrix notation is suitable for respectively, and fis the identity matrix.

numerical computations, and it helps in the physical interpre- Case 1, n = 1:
tation of the results. For example, each field component off, r0  0l
(see (24)), not including the incident field, was written as the a] - "

-/ i(a0) 2 F1(aO)i.l(aO) 191 1[ 0 01
product of three matrices and the incident field f,(z = 0, y = L

0, z) = F,) exp (ikz cos ), namely, (40)

rreflection, where a : it and t In ((I - cos 3)/sin 3).S/diffraction, et,-. "f'(z = 0, y = 0, Z). Case 2, n = 2:
L c o e ffi c ie n ts 2 s n 0 + ~ , )

Thus one starts withf.(x = 0, y = 0, z) and after multiplying s +-- (- )
fl'(x = 0, y = 0, z) times the transformation matrix 9. one (2 sin 3+K(ao))02

obtains an expression which is proportional to the field

components normal to the wedge walls. Next, multiplying (41a)3 .(x = 0, y = 0, z) times the reflection, diffraction, or []((of)-(o2)+ (_Oao)d()211

surface wave launching coefficient, one gets the "normal" '62 2sin3 si0 K

components of the reflected, diffracted or surface wave fields, 2 sin 3 + K(c0)

respectively. The last step is to multiply these "normal" (41 b)
components times the inverse of the transformation matrix 9 to
obtain the tangential field components, i.e., z-components. where o = ± it and a = -.

It is important to keep in mind that for the case of oblique The matrices C(a) and f(c) are given by the following

incidence with respect to the axis of the wedge, the fields expressions
scattered by the impedance wedge will have TM and TE2
polarized components regardless of the polarization (TM, or C(a) = ft(t)2

2(oA)I:(o)
TE.) of the incident plane wave field. Finally, note that the ( 42 )
elements of the column vector are proportional to the ray-

fixed coordinate system used in the geometrical theory of Finally, K(ao) can be written in terms of the functions M(ce)I
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and D!(a, -a*), namely, Case 4, n = 1/2:

K(ao)=2- 0 -  ° 00 a * (43a) ,/2 = - ad  161,z=/2 [ 0] (47a)

where where

D(a, - a*)='I(a)t.(-a*)- t.(()'PA((-a* (43b) d= ; (a V) 2, a1 =-+iU

Mh (a) = 'I'E(a)*An ( - a) + *h a) i'e( - a). (43c)

Note that a* is the complex conjugate of a. (47b)
Case 3, n = 3/2: and the subscript x is defined in (45a). The column vector a I

and the row vector u+ are given in (44b) and (38b),

wh3 2= - -' 163/2 = aC (44a) respectively: - E1
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Weinstein' only kept terms of O(t) in his expansion, and thus,
his boundary conditions are valid for a very thin slab.
Bernard' generalised the Weinstein procedure for the special
case when the fields have no z-dependence (ale: = 0) and
obtained a boundary condition for the field H, at the planey = t. The purpose of this paper is to obtain GIBC at the

plane y = 0 for the general case where the fields also depend
on :. Note that it is convenient for analysis purposes to obtain
GIBC at the y = 0 plane rather than the y = t plane. The
GIBC developed here are accurate to Olt') where M is arbi-
trarily large. Actually, the results obtained here are valid for
M - ,c because the GIBC are expressed in terms of infinite
order linear differential operators.

Generalised impedance boundary conditions (GIBC): The first
step in finding the GIBC for the geometry shown in Fig. I
(x > 0, y = 0) is to expand the fields E, and E. in a Taylor

GENERALISED IMPEDANCE BOUNDARY series centred atY=t-namely

CONDITIONS FOR EM SCATTERING , I (-t)r

PROBLEMS E'(v = [-- , n' 0 _ y < t Il
I o v ( n!

Indexing terms: EM field theory, EM waves, Scattering, Evaluating eqn. 1 at Y 0, where E. = E: = 0, and with the
Mathematical techniques help of Helmholtz and Maxwell equations one obtains two

a very complicated expressions in terms of the tangential com-
Generalised impedance boundary conditions (GIBC) are ponents E., E.. H. ana H.. Following the Weinstein method.derived for a planar, homogeneous, magnetic dielectnc slab these two equations are transferred to the y = t plane (bygrounded by a perfect electric conducting plane. These
boundary conditions, which are expressed in terms of linear applying the boundary conditions satisfied by the fields at
differential operators of infinite order, reduce to the Wein- y = 0 and eventually to the y = 0 plane by means of another
stein boundary conditions in the limiting case of small thick- Taylor series expansion. It turns out that by appropriately
ness of the dielectric slab. combining the two expressions, two decoupled boundary con-

ditions can be obtained in terms of E, and H, namely

Introductin: The motivation of this work arose when an {0v 2}
attempt was made to solve the problem of diffraction of a - Z'(iV + iko o L 'k V . ) H, = 0 y = 0 x > 0 (2a)
plane wave by a magnetic dielectric half-plane of thickness t
backed by a perfect electric conducting plane (PEC) as shown
in Fig. 1. Without loss of generality, the medium outside the and

(..; -Lh(iV )+'-ZI(iV) E=0 y=O x>0 (2b)

,, / / - where

z-PC . sin (fl0(. )t) cos (fl,(. )t)3 Fig. I Grounded magnetic dielectric half-plane x
sin (i -))cos (flo(.)t) ( a

material is assumed to be free space. The exact solution to this
problem r,.quires finding expressions for the fields inside and
outside the material and then matching these two solutions at I fcos (flt(.)t) cos (fl(.)t)
the boundary of the slab by means of the boundary conditions M(.) = -
satisfied by the electric and magnetic fields. Since in scattering iko qo Pr

problems one is interested in solving for the fields outside the 00(.) sin sin (#()(.)t)
material, it is convenient to replace the grounded slab by a set + fl (. ) (3b)
of equivalent boundary conditions. That is, the original con-
figuration in Fig. I can be replaced by the two-part configu- L(.) = cos (fit(-)1) cos (flo(-)t)
ration depicted in Fig. 2, where the boundary conditions for sin (fl(.)t) sin (3c

y e, flo(.)
-/ q0 #(-- ) cos (f#°(.)t) sin (fl ' ( )

Fig. 2 Two-parr planar confiquration f,(.) sin (#()(.jt)cos (3d)

f0 . (. (k2,.1 - (.)21 ) 12

x > 0, y = 0 can be expressed in terms of linear differential a2 a 2
operators. Weinstein' appears to be the first to obtain a set of (32 .)2
boundary conditions for the configuration illustrated in Fig. I (V--)' - a,:2
(x > 0. y = 0). Basically, Weinstein's procedure involves the
transfer of the boundary conditions from the plane y = 0, k= Nk o (3e)

where E, = E: = 0, to the plane y = t + , just outside the
material, by means of a Taylor series expansion in powers of t. Note that k, and q, are the free-space wavenumber and
Next. the new boundary conditions are transferred back to the intrinsic impedance, respectively, and N = V'(ep,) is the index

y = 0 plane by means of another Taylor series expansion of refraction. Also, r., and p,, which are assumed to be complex
assuming that the medium in 0 < y < t, x > 0 is free space. constants, are the relative permittivity and permeability of the

ELECTRONICS LETTERS 18th August 1988 Vol. 24 No. 17 1093



slab, respectively. Furthermore, the notation cos (.) and sin References
(. should be interpreted as follows I WEINSTrIN, L. A.: 'The theory of diffraction and the factonsation

2. method' (The Golem Press. Boulder. Colorado. 1969). pp. 295-302
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Note that for the special case when the fields have no :-I
dependence (010z = 0), the GIBC in eqns. 2a and b can be
expressed in terms of E: and H:, respectively.

From eqn. 2, it is possible to obtain boundary conditions of
O(), where M > I. This is done by keeping only terms of
O(tM) in the series representation of L!'h and Z". That is, eqn. GaInP/AIGaInP

2a can be ?proximated by DOUBLE-HETEROSTRUCTURE LASER

{H, dGROWN ON A (111)B-ORIENTED GaAs
{aM) HySUBSTRATE BY METALORGANIC

CHEMICAL VAPOUR DEPOSITION

= -ndexing terms: Semiconductor lasers. Semiconductor yrowth.

and eqn. 2b by Vapour deposition

Room temperature continuous-wave operation of a
{' =Ga 0.,ln0 .,P,'1(A1.,Gao.,)o 1n..,P double-heterostructure

b(M) EY laser grown on a (I1I )B-oriented GaAs substrate by metal-
= -organic chemical vapour deposition was obtained for the first

Mk time. The threshold current was 99mA. The emission wave-
+r i h ).i(M) E:, 0 (5b) length was around 650nm, which was about 3Onm shorter

-)0- qo than that of a similar laser grown on a (100)-oriented GaAs

where the coefficients a, and b, are obtained from eqns. 2-3. substrate.

When M = 1, eqns. 5a and b reduce to the boundary condi-
tions obtained by Weinstein, i.e., Although the stable operation of a 680nm-band GalnP

AIGaInP dcuble-heterostructure (DH) laser grown by metal-
organic chemical vapour deposition (MOCVD) for more than2000 hours at 50'C has been reported,' the 684nm emission
wavelength of the laser was about 30nm longer than the

(6a) 650 nm wavelength emitted by lasers grown by other methods. -
ikot7(pu, - 1) It has been shown that the difference between the two wave-

lengths can be attributed to ordering of the elements on the2 ( ,+~ *l)Er=0 column III sublattice Several groups have investigated the
. / order of the elements and verified that 1/2 (111) ordering

0 K'4,,2occurs in GaInP layers grown on (100) GaAs by MOCVD. 3- s

I 0 K( ( 4 N- )1/21 6 b) Because the formation of an ordered structure is accompanied
2 = 1 _))j (6b) by a decrease in bandgap energy of up to 70meV, the emis-

sion wavelength of a laser with an ordered crystal is longer
where K' = (ikD t(I - I/,))- . Finally, when E, -- 1 eqn. 6b than that of a laser with a disordered crystal. If the ordering in
also reduces to the Leontovich boundary condition where the crystal can be suppressed, the emission wavelength can be
ki (1) = 1/'.4(11. shortened to about 650nm. This shortening of wavelength

(A;. - 30nm) corresponds to the extent the wavelength can be
Conclusion: GIBC are obtained for a planar magnetic dielec- shortened by substituting an (Alo.j 6Gao. 4 )0 .5In 0.5 P active
tric slab backed by a PEC plane. These boundary conditions layer for a Gao.s1no.P active layer. However, because the
are written in terms of linear differential operators of infinite threshold current tends to increase with increasing AlP

order. It turns out that the GIBC can be decoupled into two content in the active layer,6 shortening the emission wave-
equations in terms of Ey and Hy only. This result is not sur- length by suppressing the ordering, not by adding AlP in the
prising since it is shown in Reference 3 that the exact Fresnel active layer, is a promising method for growing lasers with
reflection coefficient for the PEC-backed slab depicted in low threshold current.
Fig. I can be expressed in terms of E, and H, only. Note that Recently, we have established by transmission electron
boundary conditions of 0 (t") can be obtained from the GIBC microscopy and photoluminescence measurements that
by keeping terms of O(tM) in the series expansion of the linear GaInP and AIGaInP grown on (111)B GaAs by MOCVD
differential operators L'0 and Z" .These boundary conditions show no trace of ordering. Therefore, a disordered crystal can
are very useful because they simplify the analysis of canonical be obtained simply by growing it on a (111)B GaAs substrate
diffraction problems as the one illustrated in Fig. 1. Finally, it by MOCVD.
should be emphasised that the GIBC developed here recovers In this letter, we report on the first GaInP/AIGaInP DH
the exact Fresnel reflection coefficient for the grounded slab laser which was grown on a (III)B GaAs substrate by
depicted in Fig. 1. MOCVD.

The epitaxial layers were grown on a Si-doped (I 1 I)B GaAs
Acknowledgment: This work was supported in part by the substrate tilted 20 towards the (110> direction by atmospheric
Joint Services Electronics Program, Contract No. N00014-88- pressure MOCVD using ethyl-organometallics, phosphine,
K-0004 and The Ohio State University Research Foundation. and arsine as source materials. The growth temperature of

680'C and the V/Ill ratio of 340 were the same as those for
R, G. ROJAS 30th June 1988 the DH lasers grown on (100) GaAs substrates. The p-type
ElectroScience Laboratory dopant was dimethylzinc and the n-type dopant H2Se, but the
Ohio State Unirersity amount of H,Se was reduced by a factor of seven compared
1320 Kinnear Road with that used in growth on (100) substrates, because the
Columhus. OH 43212, USA dopi.tg efficiency of Se-doped AIGaInP on the 20 off (111)B
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Simple Examples of the Method of Moments in
Electromagnetic s

EDWARD H. NEWMAN, SENIOR MEMBER, IEEE

Abstract-The purpose of this paper is to present three simple ex- is referred to several books 121-[6] as well as hundreds of
amples of the method of moments in electromagnetcs. The examples articles in such journals as the IEEE TRANSACTIONS ON
shown are the input impedance of a short dipole, plane wave scattering
from a short dipole, and two coupled short dipoles. The relative sim- ANTENNAS AND PROPAGATION for the details and limita-
plicity of the examples is a direct result of obtaining simple expressions tions of the method. Of the many papers, the author rec-
for the elements In the method of moments impedance matrix. ommends Harrington's description of the MM [1], Rich-

mond's description of the solution of scattering problems
I. INTRODUCTION using a system of linear equations [7], and Tsai and

T HE METHOD of moments (MM) is a numerical pro- Smith's particularly simple explanation of the MM [8).
cedure for solving a linear operator equation by trans- Section II also presents simple expressions for the ele-

forming it to a system of simultaneous linear algebraic ments in the MM matrix equation. Based upon these
equations, commonly referred to as a matrix equation. equations, Section III presents three simple examples
Since Harrington's classic paper [1] and book [2] there which can be worked in about one hour. These include
has been a virtual explosion of research and engineering the input impedance of a short dipole, plane wave scat-
involving the application of the MM to electromagnetic tering from a short dipole, and two coupled short dipoles.
radiation and scattering problems. It is safe to say that
most universities with a strong graduate program in elec- II. THEORY

tromagnetics include the MM in their curriculum. A. The Integral Equation
In introducing a new subject to a student, there is noth- Fig. 1(a) shows the basic problem to be solved. Here

ing as valuable as a simple and yet meaningful example we have a perfectly conducting dipole of length L and
which can be solved in a short period of time. The put- radius a in free space with constitutive parameters ( As, E).
pose of this paper is to present such an example for the The dipole is illuminated by the fields of the known im-
MM in time harmonic electromagnetics. The example pressed electric and magnetic currents (J', M'). In this
chosen is the radiation and scattering from an electrically paper, all fields and currents are considered to be time
short, perfectly conducting dipole antenna. This example harmonic with the e""' time dependence suppressed. X will
is chosen because the short dipole ia probably the simplest denote the free space wavelength. In the absence of the
of all antennas, and thus the student is most likely to have dipole, the impressed currents radiate the assumed known
a feel for its characteristics. The MM solution employs incident electric and magnetic fields (E', H'). In the pres-
the piecewise sinusoidal expansion and weighting func- ence of the dipole, the impressed currents radiate the un-
tions. This choice was made for two reasons. First, the known total fields (E', H').
piecewise sinusoids constitute a rapidly converging basis As illustrated in Fig. 1(b), the first step in obtaining an
set for the currents on a thin wire. Thus, reasonable re- integral equation for the currents on the dipole is to use
suits can be obtained with only three modes on the wire. the surface equivalence principle [9] to replace the dipole
Due to the symmetry of the dipole current, one unknown by free space and by the electric surface current density
can be eliminated and we will need to deal with matrices
of size 2 x 2. Second, for the short dipole the elements J x H'. (1)
in the MM matrix equation can be approximated in terms J exists on the entire surface S which encloses the dipole
of simple functions typically found on a scientific calcu- and has outward normal A. The use of the equivalence
lator. principle is central to the development of the integral

Section 11 outlines the MM solution for the current on equation for J since it allows us to deal strictly with thea dipole antenna. The presentation is brief, and the reader fields of sources in free space. In the equivalent problem
of Fig. l(b), the total fields are produced by (J', M') and

Manuscript received January 29. 1987; revised February II, 1987. This raiig I fte sace. nre pace b r Te the so-

work was sponsored under Contract N00014-78-C-0049 between the Ohio J radiating in feee space. In free space, J radiates the so-
State University Research Foundation and the Joint Service Electronics called scattered fields defined by
Program.

The author is with ElectroScience Laboratory, Ohio State University, "' Es = El - El (2)
Columbus. OH 43212.

IEEE Log Number 8820376. W = H' - H'. (3)

I
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(/s.) (I'.m,,LJ

(a).,u ,. , I_
3

a dipole which has been split into four equal segments.

( .L l 'J' l l'I¢ B. MM Solution of the Integral Equation

-J2 Instead of solving (5) for the surface current density J,
a ~it is more convenient to solve for the total current-

1(z) = 2wraJ(z). (6)

The first step in the MM solution is to expand tht un-I
(b) known current in terms of some basis set. Thus, we write

N
Fig. 1. (a) The geometry for a perfectly conducting dipole illuminated by I(Z " 4 iF,(7

the impressed currents. (b) The equivalent problem in which the dipoleLtZ =
is replaced by free space and by equivalent electric currents flowing on =l
its surface. where the I are a sequence of N unknown complex coef-

licients, and the F, are a sequence of N known modes or
An equation for J is obtained by enforcing the boundary basis functions. In our case, we choose the F, as theU
condition that the total electric field tangential to the sur- piecewise sinusoidal dipole modes used by Richmond
face S must vanish, i.e., 112]. For example, Fig. 2 shows a dipole of length L split

into four equal segments of length d = L/4. In Fig. 2,
Ai x (E' + E') =0 on S. (4) the segment numbers are shown circled. Segment n goes

Equation (4) is an integral equation for j written in sym- frmztoz+ .Teicwseinodamdsae

bolic form since the scattered electric field E1 can be writ- placed on the dipole in an overlapping fashion with modeI
ten as an integral over S of the dot product of J and the n existing on segment n and n + 1. Mode n has endpoints
dyadic free space Green's function [101. z, and z,+2, and center or terminals at z,+,. F, is a ilia-

For a thin-wire dipole, whose radius a << X, the fol- menit of electric current, located at radius a from the wire
lowing simplifications are made: center line (i.e., on the surface of the wire) and with cur-

l) The current on the endcaps of the wire is ignored, rent
2) The longitudinal component of current Jz is much sin k(d - I z - z, + t)

greater than the circumferential component .4. Thus, we Fd(z) = sin kd amps (8)I
ignore J4. As a consequence, (4) is applied only to the £ in which k = 2i'/X is the free-space wavenumber. F,(z)
components of the electric fields. iszrmtisedonsadrie iuodlyt ai

3) Instead of enforcing (4) on the surface S, we will i eoa t npit n ie iuodlyt aimum at its center with terminal current of Fe =U
enforce it on the center line of the dipole. This is reason- F,( +)-1A.Ntththeiewiesnodamds

abl sice he entr lne s eecticaly o coseto he produce a current which is continuous on the wire and•
surface; however, we note that this approximation can re- also zero at the dipole endpoints [3]. Since the expansion I
suit in the numerical problem of relative convergence [I I]. modes have unit terminal current, the dipole current at

With these approximations, we are solely interested in z, +t is I, amps (except at the dipole endpoints where the
the £ component of all electric fields and currents. Thus, current is always zero). Equation (8) produces a sinuso- [
the vector notation will now be dropped and the * corn- idal interpolation of the current values at the N + 2 points II
ponent is understood. For example, the vector (4) now on the dipole.
reduces to the scalar equation Substituting (7) into (5) yields•

- = E t  on the dipole center-line. (5) N

- X I,E Eu on the dipole center-line (9)
In the next section, (5) will be solved using the MM. -

mom
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where E" is the free-space 2 component of the electric frequency solutions, which are applicable when the an-
field of F and is available in terms of simple functions tenna or scatterer is not too large in terms of a wave-
[13], [14]. length.

The weighting functions in the MM solution will be C. Simple Expressions for Z,,. and V,.
chosen identical to the expansion functions, except that
they are located along the center line of the dipole. This Simple Expressions for Z,,,,: The major problem in an
is because we chose to enforce (5) on the center line. The MM solution is usually the evaluation of the elements in
next step in the MM solution requires an inner product. the impedance matrix. Usually this involves numerical in-
We will define the inner product between the functions tegrations and/or the evaluation of special functions. As

f(z) and g(z) as a result, most MM solutions are done on a digital com-
L puter and require a great deal of programming time and

(f(z), g(z))(z) dz effort. For this reason, most MM solutions are not suita-
ble as a simple example problem which can be accom-

w integration is over the length of the dipole. Now plished in about an hour using only a scientific calculator.
where inerot of th les of the e- Below we will present relatively simple expression for the
taking the inner product of both sides of (9) w th s, - elements in the dipole MM impedance matrix, thus elim-
quence of N weighting functions F= (m = 1, 2, • m ,iating the need for a digital computer to carry out the
N ), (9) becomes an N × N system of simultaneous linear iaigtene o iia optrt ar u h
N)l(bcmeation Nhich can N wte om l s inemar MM solution to the examples given in the next section.
algebraic equations which can written compactly in ma- For the dipole antenna, the elements in the impedance

10)ramatrix, as given by (11), are the mutual impedance be-
[ZJ]I = V. (10) tween parallel piecewise sinusoidal dipole modes. Fig. 3

Hp shows two parallel piecewise sinusoidal dipole modes of
Here I is the current column vector whose N components length 2d. The bottom of weighting mode m is located ahold the I, of (7). [ Z ] is the N x N impedance matrix distance h above the center of expansion mode n, and the
whose typical term is modes are staggered by the distance r. For convenience,

im F" the expansion mode has its center at z = 0. Exact expres-

Z, - EF,. dz. (11) sions for the mutual impedance between these modes has
" been given by King [141. Unfortunately, King's expres-

For the dipole, the [Z I matrix is symmetric and also sions are very lengthy and also require the evaluation of
toeplitz since Z,,, is only dependent upon I m - n 1. In sine and cosine integrals. In order to simplify King's
general, [Z ] is dependent upon the geometry and material expressions, we will assume that the modes are electri-
composition of the scatterer, but not on the incident fields. cally small and electrically close. This will always be the

A typical element of the right-hand side or voltage vector case for modes on an electrically short dipole. Specifi-
V is given by cally, if we assume that kd, kh, and kr are all << 1, then

in the Appendix we show that King's expressions for the
V. ' dmutual impedance between modes m and n reduce to
Vm = E'Fm dz. (12)M" Z. = R,. + jX,, (13)

The integrations in (11), (12) are on the dipole center where the real and imaginary parts of Z,,,, are given by
line, and over the extent of Fm,. i.e., from z = z,, to R,, = 20(kd)2  (14)
Zm+ 2. The dimensions of the elements of [Z I and V are
volt-amps (VA), while the elements of I are dimension- 30
less. If the Z,,were divided by FoF,,o, then the Zm,, would X,, - " [-4A + 6B - 4C + D
have dimensions of ohms. Since in our case the modal

terminal currents are F,,0 = I A, our Z.,, can be con- + E + 4h In (2A + 2h)
sidered to have the dimensions of ohms. In any case, the - 6(d + h) In (2B + 2h + 2d)
[Z ] matrix is usually referred to as an impedance matrix
and Vas a voltage vector since the matrix (10) resembles + 4(2d + h) In (2C + 2h + 4d)
an N port generalization of Ohm's law. + (d - h) In (2D + 2h - 2d)

As N = the number of terms retained in the expansion
for the current increases, the MM solution should ap- - (3d + h) In (2E + 2h + 6d)] (15)
proach the exact result. In order to obtain results suitable where
for engineering accuracy, typically N = 4-10 piecewise
sinusoidal modes per wavelength of wire are required. As .A = 1r2 +
the electrical length of the wire increases, N must increase 2

and thus so does the computer CPU time and storage B = N/r2 + (d + h
needed to set up and solve the matrix equation (10). For
this reason, MM solutions are often referred to as low- C = Vr 2 + (2d + h)I
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I called delta-gap model [3]. A delta-gap generator is one
I which creates an extremely large, but highly localized

electric field polarized parallel to the wire center-line. A
is - volt delta-gap generator located at z = z' has the inci-

d "dent field

E va (Z - Z') (20)
F. where 6 (z) is the unit area Dirac delta function. Nor-

d &- mally, the generators are placed at the center or terminals
of the piecewise sinusoidal modes. Thus, referring to Fig.
2 for a dipole with N = 3 modes, the generator could be

X - r 0 placed at points 2, 3, or4 which would be at the terminals
of modes 1, 2, or 3, respectively. Inserting the incident

,d field from (20) into (12) shows that if a delta-gap gener-
ator of v. volts is placed at the terminals of mode m, then

Fig. 3. Geometry for the mutual impedance between two parallel piece- V. V. (21)
wise sinusoidal dipoles. Element m of V is nonzero only if a nonzero generator is

placed at the terminals of mode m.
-f T 2Lumped Loads: Now consider the effect of placing aD-= 4 2 + (d - h) lumped load in the wire. A lumped load of Z1, ohms,

S + +placed at the terminals of mode m, will produce a voltage
= r 2 + (3d + h). of -1.Zh. volts at these terminals. If we treat this voltage

Equations (14) and (15) can be said to be suitable for a as a dependent delta-gap generator, then according to (21)
scientific calculator since they involve no operations more we should add -4,ZL, to V,. However, this is an un-
complicated than the natural log and square root. Note known voltage since initially I. is unknown. Since it is
that R,.. is the well known formula for the radiation resis- conventional to write all unknowns on the left-hand side
tance of a short dipole and is independent of mode sepa- of the matrix equation, we add 1.,,Z to both sides of row
ration. Equation (15) will further simplify if we assume r m of the matrix equation. Thus, it can be seen that a
= a << d (the wire radius is much less than the segment lumped load of Zt. ohms placed at the terminals of mode
length) and also consider certain special values of h. For m simply results in Z,, being replaced by Z. + Zb ,.
self-impedance terms m = n and There is no physical break or gap in the wire where a

30 generator or load is placed. Thus, the current is continu-
X,,h= -d) - [-4 + 4 In (d/a)]. (16) ous through generators and loads. There is a slope dis-

continuity, or jump in the derivative of the current, at the
For adjacent modes with one overlapping segment I m - generator or load. Note that the piecewise sinusoidal

n = 1 and modes account for this behavior by enforcing continuity
of current on the wire and by allowing a slope disconti-

X,,(h = 0) [1-- [1 + 2 In (1.54a/d)]. (17) nuity attheir terminals.
kd Plane Wave Excitation: Next consider the situation

If I m - ni = 2, then the modes share a single point and where the wire is excited by a normally incident plane
wave. If a 2 polarized plane wave is incident from the +x

X,(h = d) 30 [-0.68]. (18) axis with magnitude E0 , then
k,(d ) - E' = Eoe Jb .  (22)

If I m - nj I 3, then the modes are not touching and Inserting (22) into (12) and integrating yields

30 [hI h4(2d + h)' 2E0

X,(h 2d) = -(d + h)'(h - d)(3d + h) V -- t (23)
(d+ h)'(h - d

+ in (d + h)(19) ( dI. NUMERICAL EXAMPLES
( A. Example I-Dipole Input Impedance

Voltage Generators: Now consider the evaluation of In Example 1, we compute the current distribution and
the right-hand side vector V. As seen in (12), V is depen- input impedance of a center fed dipole antenna. Referring
dent upon the f component of the incident electric field, to Fig. 1(a), we will consider a dipole of length L = 0. 1

First, consider the case where the dipole is excited by m, radius a = 0.0001 m, and at a frequency of 300 MHz
a voltage generator. The simplest and probably the most or X = I m. As illustrated in Fig. 2, we will use N = 3
commonly used model for a voltage generator is the so- piecewise sinusoidal modes on the dipole, and segment
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the dipole into N + 1 = 4 equal segments of length d = TABLE I

L/4 = 0.025 m. In this case the 3 x 3 MM matrix (10) EXAMPLE I ELEMENTS oF THE [Z] MATRIX (VA)

can be explicitly written as Element Approximation Exact

FZ Z
1
2 

Z13 1 [ Z11 0.4935 - j3454 0.4944 -j3426

ZZ2 0.4935 + j1753 0.4945 + j1576

Z21 Z22 Z 2 3  12 = L 4  (24) Z 3 0.4935 +j 129.9 0.4885 + j 12.2

LZ 3 1 Z 32 Z 3 3  13 J3
Since the current on the center fed dipole will be sym- merically equal to the current in amps at the center of

metric, 11 1 13. In this case, we can add column 3 of the mode m. Thus, the dipole input or terminal current is 12

matrix equation to column I and reduce the order 3 matrix A. The input impedance is given by the ratio of the input
equation to the order 2 matrix equation voltage to the input current, i.e.,

V + Z 13 ) Z 12 1[,1 V . (25) Z = 1/12 = 2.083 -j1605 Q.

L(Z21 + Z Z22J 12 V2 By contrast, if we were to use the exact values of IZ)
from Table I, then the results for the current distribution

Reducing the order of the matrix equation from 3 to 2 and input impedance would be
greatly reduces the effort in the hand calculations required
to solve the matrix equation. 11 = 13 = 0.0002498/90.0 0

Although [Z ] in (24) and (25) contain nine elements,
on!y three are distinct since from the symmetry of the di- 12 = 0.0005219/89.90
pole Zin = 1.892 - j1916 fl.

ZII = Z22 Z33 B. Example 2-Scattering from a Dipole

Z12 = Z2= = Z32 In Example 2, we will compute the broadside plane

Z13 = Z 31-. wave scattering from the same dipole considered in the
above example, except that it is terminated in a conjugate

The real part of each Z,,, is given by (14) as matched load. To terminate the dipole in its conjugate
= 04935 VA. matched load, we place a lumped load of Z* at the center

of the dipole, i.e., at the terminals of mode 2. Using the
The imaginary part of the Z.,, can be computed from value of Zin computed above,

(15); however, here we choose to use the simpler (16)-
(18). Table I shows the elements in the first row of the Z12 = Z = 2.083 + j1605 Q.

i [ZI matrix of (24) computed by (13), (16)-(18) and by As discussed in Section II, the impedance matrix for
King's exact expressions [14], [15]. Note that the approx- the loaded dipole is identical to that of the unloaded di-
imate values of [Z J are within 11 percent of the exact pole except that we add Z12 to the self-impedance of mode
values. 2 to obtain

If the approximate values of [Z I from Table I are sub-
stituted into (25) we obtain Z22 = (0.4935 - j3454) + (2.083 + j1605)[0.9869 - j3324 0.4935 + j1753 1 1 = 2.576 - j1849 VA.

I [I0.9869 + j3506 0.4935 -j34541J L=[ If the incident electric field is a unit amplitude, 2 po-
larized plane wave incident from the +x axis, then the

(26) elements of the right-hand side vector are identical and3 where we have set V2 = 1 VA since there is a 1 V gen- given by (23) with E0 = 1,

erator at the terminals of mode 2. Equation (26) can be V., = 0.02505 VA m = 1, 2, 3.
easily solved using Cramer's rule. The results for the ele-
ments in the dimensionless current vector are Since the excitation and loading of the antenna are sym-

metric with respect to the center of the dipole, the current
I1 = 13 = 0.0003286-z 89.8920 on the dipole remains symmetric. Thus, the current vector
12 = 0.0006230 z_ 89.9260.  can still be computed from the order 2 matrix (25),

The dipole current can now be obtained by inserting [0.9869'.- j3324 0.4935 + j1753 1[ 1
these coefficients into (7) with N = 3. The dipole current L0.9869 + j3506 2.576 - j1849 JL12J
will have dimensions of amps, since the expansion modes [0.02505]
F, have dimensions of amps. Also, since the current ex- . (27)
pansion modes have a terminal current of I A, !m is nu- [0.025051I!-
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Equation (27) can be solved using Cramer's rule. The re- o0ft n. I I
suits for the elements in the dimensionless current vector
are

I = 13 = 0.006515cO.561 4

12 = 0.0123540.5480. IV Pi L.1Im

The scattered field is given by [
N I,

E= 1,,Es (28)

where as in (9), E is the free-space electric field of ex- 66o.oom
pansion mode F.. For a field point on the +x axis (i.e., Fig. 4. Geometry for the two coupled dipoles in Example 3.

in the backscatter direction) and in the far-zone of the di-
pole, E will be 2 polarized and given by TABLE 1II

= j60 tan (kd/2) - V/m. (29) EXAMPLE III ELEMENTS oP THE [Z J MATRIX (VA)

X Element Approximation Exact

Using (29) and the above values for the I., the far-zone
backscattered electric field is Z1 1.9739 -j1992 2.0000 -j192 1

Z12 1.9739 - j232.8 1.971 - j325.1

Es = 0.1199/90.6 0 e - j kx V/m.
X

The radar-cross-section of the dipole is we obtain

2E~j
2  [ 1.9739 - j1992 1.9739- j232.8 ] 1 1.

a = 4TX (30) 1.9739 -j232.8 1.9739 -j1992 l 12 0

By contrast, if we were to repeat this example with the (32)

exact values of [ Z j from Table I, the results would be In (32) we have set VI = I since to compute the input
impedance of dipole I we place a I V generator at the

11 = 13 = 0.006199-L0.00 terminals of mode 1. Equation (32) has the solution

12 = 0.0129540.0°  1, = 0.0005090z/89.955 0 and

a = 0.1801 m2 . 12 = 0.000059494 - 89.6160.

C. Example 3-Coupled Dipoles The input impedance is

In Example 3, we analyze the mutual coupling between 7= 1 Il1 = 1.539 - j 1964 0.
two short dipoles. As illustrated in Fig. 4, the dipoles are i
identical to that considered in the Example 1 above (L = In the absence of dipole 2, the N = u mode solution for
0.1 m, a =0.0001 m, andf= 300 MHz), and ar sep- the input impedance of dipole I is numerically equal to
arated by a distance s = 0.01 m. Here we wish to compute Z,,. Thus, in the absence of dipole 2, the input impedance
the input impedance of dipole I in the presence of dipole of dipole I would be 1.9739 - j 1992 0.

2. To minimize the computations, we will place only one If the exact values of [Z I in Table 11 were used, then

piecewise sinusoidal mode on each dipole. Thus, the or- the input impedance of dipole 1 in the presence of dipole

der N 2 matrix equation for this problem is 2 would be 1.382 - j1866 0.EI Z1 t2 i1 _F 1  IV. SUMMARYiF] =V. (31) The purpose of this paper has been to present simple

Z21  I I2 V2examples of the method of moments (MM) in time har-

Only Ztp and Z12 need be computed since from the sym- monic electromagnetics. By simple it is meant an example
metry of the dipoles Zt1 = Z22 and Z12 = Z2 1. Z1 is eval- which can be worked in about an hour with a scientific
uated from (14) and (16) with d = -h = L/2 - 0.05 m calculator. Such examples are not common because typi-
and r = a = 0.0001 m. Z12 is evaluated from (14) and cally MM solutions require dealing with relatively large
(16) with a replaced by s = 0.01 m since Al - -d. The systems of simultaneous equations. Also, the evaluation
results for Z,1 and Z12 are shown in Table II where they of the elements in the MM matrix equation usually require
are compared with the exact values [141, [15). either numerical integrations or the evaluation of special

Inserting the approximate values from Table II into (31) functions. By contrast, the examples shown here required
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dealing with matrix equations of size 2 x 2, required no with E given by (33). King 1141 showed that (37) can be
numerical integrations, and involved no special functions integrated exactly. Unfortunately, the result is a very
not commonly found on a scientific calculator. It is hoped lengthy expression which requires the evaluation of many
that these examples will be of value in a graduate or senior sine and cosine integrals. Thus, although King's expres-
level course in applied electromagnetics. sion are well suited to programming on a digital computer

The examples chosen involved the radiation and scat- [15], they are not as suitable for calculations with a hand
tering by an electrically short thin-wire dipole or pair of calculator.
dipoles. These examples were chosen because of the geo- In order to obtain a relatively simple result from (37)
metric simplicity of the dipole, and also because there is we assume kd, kr, and kh are all << 1. In this case, the
a reasonable chance of the student being familar with the following small argument approximations are valid:
basic characteristics of the short dipole. The MM solution sin k(z - h) k(z - h)
used the piecewise sinusoidal modes. This choice was
made for two reasons. First, approximate expressions sin k(2d + h - z) k(2d + h -- z)
were obtained which allowed the elements of the MM sin kd kd
impedance matrix to be evaluated from simple expres- 3

sions involving only the log and square root functions. e-Jkr I - jkr, + j(kr,) /6
Second, on a dipole, this choice results in a very rapidly i 0, 1, 2.
converging MM solution. This permitted reasonably ac-
curate results to be obtained with only three unknowns, Using these approximations, (37) can be integrated 116]
and using the symmetry of the dipole current 2 x 2 ma- to yield (14) and (15). Although (15) is still rather lengthy,
trices. it can be further simplified to (16)-(18) for the examples

in Section Ill.
APPENDIX
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